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Management of 3D geospatial data involves four distinct steps: creation, analysis, query, and 

visualization. However, the existing works mostly focus only on the visualization step. There are 

other aspects to be tackled such as interoperability, 3D analysis and query, managing varying levels 

of detail, and 3D model creation.   

Imposed by web environments, the main problem with the management of large-scale 

geospatial 3D data is the requirement to work via smaller chunks of the data. Browsers impose 

memory limits and networking protocols impose traffic management restrictions. 

Hence in this thesis, for the first time in the literature a web framework has been designed 

and developed for management of 3D geospatial data using only open-source software components. 

End-users can create their 3D models, tile 3D data, analyze and query 3D data and can visualize 3D 

without any software component of plug-in installation. Using modelling component of the 

framework, 3D models can be generated procedurally using only 2D data for the first time on the 

web. Using the tiling component, large-scale 3D geospatial data can be decomposed to tiles and the 

tileset can be visualized via browsers efficiently. The efficiency comes from that developed 

framework guarantees the rendering performance as 60fps while displaying tiles. Using analyze 

component, 3D analyzes, and queries can be performed, and result can be visualized on the web. 

To perform 3D analyzes efficiently a new 3D intersection algorithm has been developed and used 

in the analyze component of the developed framework. 3D Tiles specification and Quantized Mesh 

specification have been implemented while developing the framework to ensure the interoperability 

of the framework with other software components. 

 

 

Key Words: 3D WebGIS, 3D Geospatial Data, 3D Analyzes, 3D Modelling, 3D Data Structures  
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3B Coğrafi verinin yönetimi dört ayrı adımdan oluşmaktadır: Oluşturma, analiz, sorgu ve 

görselleştirme. Mevcut çalışmaların çoğunluğu sadece görselleştirme adımına odaklanmaktadır.  

3B veri yönetimindeki ana problem web ortamları tarafından dayatılan daha küçük boyutlu 

verilerle çalışma zorunluluğudur. Tarayıcılar hafıza sınırı kısıtı dayatırken ağ protokolleri veri 

trafiği yönetimi sınırlamaları dayatmaktadır.  

Bu tezde, literatürde bir ilk olarak, 3B konumsal verinin web tabanlı yönetilmesi için bir web 

çatısı tasarlanmış ve sadece açık kaynak kodlu yazılım bileşenleri ile geliştirilmiştir. Son 

kullanıcılar geliştirilen bu çatıyı kullanarak herhangi bir yazılım bileşeni ya da eklenti kurulumu 

gerekmeden 3B modellerini oluşturabilir, bölümleyebilir, üzerlerinde analiz ve sorgular 

gerçekleştirebilirler. Çatının modelleme bileşeni kullanılarak literatürde ilk defa bu bileşen ile 

sadece 2B veri girdisinden prosedürel modelleme yöntemi ile 3D modeller web tabanlı olarak 

üretilebilir. Bölümleme bileşeni kullanılarak büyük boyutlu 3B konumsal veri bölümlenebilir ve 

oluşturulan bölümler etkin bir şekilde tarayıcıda görüntülenebilir. Etkinlik, geliştirilen çatının 

görüntüleme performansı olarak 60fps değerini garanti edebilmesinden kaynaklanmaktadır. Analiz 

bileşeni kullanılarak 3B analiz ve sorgular gerçekleştirilebilir ve sonuçlar web tabanlı olarak 

görüntülenebilir. Analizleri etkin bir şekilde gerçekleştirebilmek için yeni bir 3B kesişim 

algoritması geliştirilmiştir ve çatının analiz bileşenine entegre edilmiştir. Çatının diğer yazılım 

bileşenleri ile birlikte çalışabilmesi için çatı geliştirilirken 3D Tiles ve Quantized Mesh standartları 

kullanılmıştır. 
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Yapıları 
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1. CHAPTER 1 GENERAL INFORMATION 

 

1.1. Introduction 

 

Forming the basis for many spatial information processing applications, digital 

elevation models (DEM) refer to a 2.5D representation. DEM is based on the principle that 

the topographic surface is defined mathematically by represented with a function (f). 

Determining the function “f” is a “surface fitting” problem. With a mathematically defined 

surface, it is now possible to perform many analyses or applications that this definition 

allows. However, in such a definition, since the z value of any point will be calculated by 

the formula "z = f (x, y)," a single z value can be obtained against the same x and y values. 

Such a definition or representation is called 2.5D. In a 3D representation, multiple z values 

can be obtained against the same x and y values. In other words, in contrast to 2.5D 

representation, 3D representation allows in which not only the surface but above and below 

the surface can be defined. Therefore, in the analyses which require 3D representation, 

DEMs will be insufficient to use. Analysis involving objects that need to be defined above 

and below the surface, such as shadow analysis, various geological analysis, and airflow 

analysis, will require 3D representation. 

Today, the main input data for 3D GIS applications that require 3D representation are 

3D City Models (3DCM). A 3DCM is a digital representation of city objects with three-

dimensional geometry and attribute information, with buildings as the most prominent 

feature.  

With the advancement in 3D Graphics and computational capacities of computers, the 

use of 3DCMs is becoming increasingly common. Many cities around the world are adopting 

their own 3DCMs. Even in Turkey, which has always been a problematic country about data 

acquisition and sharing, with a nationwide project called "3D City Models and Cadastre", 

3DCMs of every province are being produced. 

With rapid developments in web technologies such as HTML5 and WebGL, WebGIS 

applications have replaced desktop applications for 3D GIS. The ability to visualize 3DCMs 

and interact with 3DCMs via browsers has become an exciting and trending topic (Rodriguez 

et al., 2013). Access to 3DCMs from internet browsers enables the use of 3DCMs by a large 

mass of professionals who are not experts in spatial information but who can benefit from 
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3DCM in their own studies (Prandi et al., 2015). With the dramatic increase in using 3DCMs 

and advancements in web technologies, a new research topic called 3D WebGIS has 

emerged. 

 

1.2. Problem Definition 

 

Despite the importance of web-based management of 3DCMs, this topic has not been 

investigated extensively. Management of 3DCMs involves four distinct steps; creation, 

analysis, query and visualization. However, the existing 3D WebGIS works mostly focus 

only on the visualization step. Although 3D visualization is an important aspect of 3DCM 

management, there are other aspects to be tackled such as interoperability, 3D analysis and 

query, managing varying levels of detail, and 3D model creation.   

Imposed by web environments, the main problem with the management of large-scale 

geospatial 3D data is the requirement to work via smaller chunks of the data. Browsers 

impose memory limits and networking protocols impose traffic management restrictions. 

Thus, algorithms will have to figure out, either during visualisation or analyses, the affected 

chunks and manage the operation accordingly. Some examples to the management difficulty 

when working with the smaller chunks, called “tiles”, would be to preserve object integrity 

due to tile borders and updating the tiles’ contents when their data is changed. 

The interoperability problem refers to the neglectance of this issue in most of the 

related work. The way of developing interoperable applications is to employ standards. One 

problem here is the immaturity of the 3D geospatial data standards. The immaturity is due 

to by either their definition or the limited number implementations. 

Concerning 3D analyses and query, the issue is whether the analyses are carried out in 

an “online” or “offline” mode. In the offline mode, the analyses are performed on a desktop 

3D software and the result is “packed” and sent to the client for visualisation. The so-called 

“3D web GIS” implementations generally operate on this mode. This makes the “real time 

playing with the 3D model” awkward; when a user wants to modify the parameters of an 

analysis he has to re-perform the analysis on the desktop and repeat the remaining steps. In 

addition, user needs and works with two different software. This is in no way online with 

the “true” web based operational mode where all the interactions of the user are over a single 

web based software. This way, a user can perform his/her analyses using the same web-
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based software in an online mode. The needed here are the mechanisms of organizing the 

tiles and tiling accordingly, which have been prototypically implemented in this thesis.  

With respect to managing varying levels of detail the issue revolves around being 

multiscale or multi-representational. In the multiscale mode, the data is generally organized 

into different tileset for each different level of detail. Whereas in the multi-representation 

the different levels of detail can be handled in a single tileset. There are pros and cons of 

each alternative, which will be discussed later in the thesis. A thorough discussion of the 

topic is missing in the literature.  

Concerning the creation of 3D city models, one part of the issue is the lack of open-

source components. To our knowledge there is only one open-source tool from Delft 

University. Other well-known tool is the CGA (Computer Generated Architecture) 

component of ESRI CityEngine, which is not web based currently and a commercial product. 

In this thesis a web-based component has been developed as a REST web service.   

 

1.3. Research Questions 

 

Research questions focus on designing and implementing a 3D SaaS tool, which 

realizes the management of large-scale 3D geospatial data online by examining today's 

modern web technologies and 3D GIS capabilities. In this context, research questions have 

been explained below. 

The thesis investigates the below research questions:  

1- What are the most up-to-date and most suitable web technologies preferably 

open-source for the management of 3DCMs? 

2- What are the open standards and formats that can be used for the streaming 

of the 3DCMs on the web? 

3- Which tiling scheme must be used for decomposition of the data? 

4- What would be the “right” implementation of different levels of detail? 

Should it be multi-scale or multi-representational? 

5-  Are “online” web-based 3D analyses viable? 

6- Is a web based procedural modelling component viable for 3D model 

generation from 2D? 
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1.4. Contributions 

 

·    Investigation of modern web technologies and concepts that can be used in 

3DCM management in Chapter 1. 

. A comprehensive literature review for web based management of 3DCMs in 

Chapter 1, Chapter 2, Chapter 3, and Chapter 4. 

·    Investigation of spatial data structures for the tiling of 3DCMs in Chapter 2. 

·    Design and implementation of an interoperable 3D tiling system for large-

scale 3D geospatial data based on OGC 3DTiles specification supports 

multiple spatial data structures in Chapter 2. 

·    Developing a novel, fast algorithm 3D intersection for the web-based real-

time 3D overlay analyses of 3D polygonal meshes in Chapter 3. 

·    Prototype implementation of the developed 3D intersection algorithm for the 

realization of web-based 3D Analysis in Chapter 3. 

·    Design and implementation of web-based procedural 3D model generation in 

Chapter 4 

 

1.5. Structure and Scope of the Thesis 

 

1.5.1. Structure of the Thesis 

 

This thesis is based on papers I have published during my PhD and also based on 

projects that I carried on during my PhD. Most of the parts have been updated and extended 

to include the latest research and developments. These updates and extensions cover the 

timeline that begins at the publication dates and deadlines of the projects until the publication 

of the thesis. Also, some parts of the papers and projects have been distributed across 

multiple chapters of the thesis. 

The thesis has been organized into 4 chapters. Chapter 1 discusses the fundamentals 

that must be known to understand before diving deeper into the proposed research and works 

such as key web technologies for web-based management of 3D geospatial data. Chapter 2 

deals with streaming and visualization of large-scale 3D geospatial data on the web. Chapter 

2 discusses how this challenging task can be realized using modern web technologies and 

proposes a tiling and a rendering service for implementation of these purposes. Chapter 3 
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concerns web-based 3D analysis and query capabilities and how they can be implemented 

in web environments. How the visualization of analysis and query results can be integrated 

with proposed tiling and rendering services of Chapter 2. Chapter 4 discusses procedural 

generation of 3D models from 2D datasets and its implementation in a web environment. 

Also, the web service that was designed and implemented for this purpose is explained. 

 

1.5.2. Scope of the Thesis 

  

This thesis is concerned with the management of the large-scale 3D geospatial data 

online. For this purpose, a web framework is developed. While developing this framework 

following objectives have been considered.  

Only open-source software components must be used to develop the framework. 

Software components should be developed in accordance with 3D standards whenever 

possible for interoperability. 

Mostly, 3D geospatial data is stored and published as 3DCMs by vendors and 

geometries of the city objects are stored as 3D polygonal meshes in 3DCMs. Although, 3D 

geospatial data can be in many different representations such as Voxels, Point Clouds, B-

Rep (Boundary Representation), Constructive Solid Geometry (CSG) and etc., these 

representations are not considered in this thesis; only 3D polygonal mesh representation is 

considered. No doubt, the proposed web framework could be extended to include the other 

representations as well. However, this thesis focuses on decomposition and management of 

the large-scale 3D geospatial data on the web rather than its different representations.  

Analysis is the analytic process that examines geometric or topological properties of 

features and extract new information. There are a wide range of different analysis techniques 

in the GIS domain such as overlay analysis, proximity analysis, network analysis etc. In this 

thesis only 3D overlay analyses which are 3D intersect, 3D clip, 3D erase, and 3D difference 

are considered and implemented. 3D topological operations, 3D map algebra are considered 

out of scope. Additionally, poor data may cause errors in the analysis. Correctness of the 

data is the responsibility of the end user. None of the developed software components try to 

detect and repair the errors in the data for you. 3D data quality is not addressed within the 

thesis since it is a completely different research topic  

There are many roof types and modelling each of them requires a different algorithm. 

In this thesis, only the four most used roof types that are explained in Chapter 4 are 
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considered. This thesis focuses on modelling of roofs using only widely available 2D data 

such as building footprints and satellite imagery. Modelling some other roof types requires 

additional data such as floor plans and architectural drawings which are not widely available.  

 

1.6. Background 

 

1.6.1. Key Technologies and Concepts For 3D WebGIS Applications 

 

1.6.1.1. HTML5 and WebGL 

 

HTML is the World Wide Web's core markup language used to structure and present 

content on the World Wide Web. HTML is the standard markup language for documents 

designed to be displayed in a web browser and it is an open standard. (URL-1). HTML5 is 

the fifth version of this standard. The biggest contribution of HTML5 in terms of 3D 

WebGIS applications, is the new "canvas" element used to render 3D contents on web pages. 

Canvas element provides an API and contexts to draw graphics. For 3D graphics, it 

provides WebGL contexts. WebGL is a cross-platform, royalty-free web standard for a low-

level 3D graphics API based on OpenGL ES, exposed to ECMAScript via the HTML5 

Canvas element (Khronos, 2014). 

Before the invention of WebGL, in order to visualize 3D content via browsers and 

developing 3D web applications, additional plug-ins must be used or standalone software 

had to be installed on the client's device, such as Flash and Silverlight. Plugins for browsers 

such as Cortona3D (URL-2), FreeWRL (URL-3), or Java applets such as XNavigator (URL-

4) have been used for visualizing 3D contents on the web. Nasa WorldWind (URL-5) and 

Google Earth (URL-6) were able to work web based but had to be downloaded and installed. 

After being redeveloped using WebGL, Google Earth now can be used without any 

additional installation. Another example is Unity Web Player which is now deprecated and 

had to be installed for displaying video games developed using Unity3D in the browsers. 

Many 3D web applications such as GeoPortail (URL-7) and 3D Macau (URL-8) require the 

installation of an additional software called Terra Explorer as a 3D viewer on the client's 

device. Open3DGIS (O3DG) (URL-9) application requires plug-in installation. 
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One of the major advantages of WebGL is that it is supported by all browsers; hence 

it does not require a plug-in. Using HTML5 and WebGL together, it is possible to develop 

3D web applications without additional software or plug-in installation. 

WebGL provides access to developers via JavaScript from the browser to the client's 

GPU (Parisi, 2014). Hence, it enables GPU-accelerated algorithms to visualize 3D data and 

perform operations on 3D data (Taraldsvik, 2011) that improves performance. 

WebGL is a de facto standard for 3D graphics on the web. There are two versions of 

WebGL. WebGL 1.0 is based on OpenGL ES 2.0 and WebGL 2.0 is based on OpenGL ES 

3.0. WebGL 2.0 is released in 2017 and brings some improvements to WebGL 1.0, such as 

multiple draw buffers that enables drawing multiple buffers at once from a shader and 

instanced drawing that enables rendering multiple copies of the same 3D content. At the time 

of writing this thesis, WebGL 2.0 is not supported by Safari, which means that 3D web 

applications developed with WebGL 2.0 will not work properly in Safari. In contrast to 

Safari, most modern browsers and libraries support WebGL 2.0 and WebGL 2.0 will become 

more common shortly. 

WebGL is based on OpenGL, originally developed in 1992 and started to get old in 

today’s technology stack. Today, modern GPUs are more complex and powerful than 29 

years ago. To better take advantage of modern GPUs' advanced features, new graphic APIs 

have been developed after OpenGL. These APIs are often referred to as "modern graphic 

APIs". 

One of the modern graphic APIs is Vulkan (URL-10). Vulkan is developed by 

Khronos, the group behind OpenGL as a cross-platform graphic API that can work on all 

systems and released in 2016. While Vulkan is being developed by Khronos, “DirectX12” 

(URL-11) has been developed by Microsoft and “Metal” (URL-12) has been developed by 

Apple. In contrast to Vulkan, DirectX12 has been developed to be used in the Microsoft 

platform and Metal has been developed to be used in macOS and IOS platforms. Compared 

to OpenGL, they are more low level and performant. 

At the time of writing this thesis, there is ongoing work about a new graphic API for 

browsers based on modern Graphic APIs called WebGPU currently being developed by 

W3C GPU for the Web Community Group (URL-13). Although specification has not been 

completed yet, it has already started to be supported by the major browsers such as Safari, 

Firefox, and Chrome. It will be the successor of WebGL in the near future. 
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1.6.1.2. Visualization Pipelines in Web Applications 

 

The visualization pipeline consists of three major conceptual steps; Filtering, 

Mapping, and Rendering (Doyle and Cuthbert 1998, Hildebrandtand  2014, Klimke 2019, 

Koukofikis et al., 2018). Filtering and mapping steps are executed on CPU by utilizing a 

data structure called scene graph while the rendering process is executed on GPU utilizing 

graphic APIs (Figure 1). These steps have been explained in more detail in the following 

sections. 

 

 
 

Figure 1. Visualization Pipeline with Hardware and Software Support. 

 

1.6.1.2.1. Filtering Step 

 

To be able to display objects from different angles a “synthetic” camera object is used. 

Camera parameters define the visible area which is referred to as view frustum or viewing 

frustum in Computer Graphics (Figure 2). In the filtering step, objects that fall into the view 

frustum are selected from a larger geospatial dataset.  This process is often called “frustum 

culling” in Computer Graphics.  
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Figure 2. Camera parameters that define view frustum 
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Figure 3. View Frustum (top) and frustum culling (bottom) (Om användning, 2010) 
 

For the frustum culling process each vertex of the data is tested against visible volume. 

Using camera parameters, the view frustum is constructed as a polyhedron. Then performing 

ray-surface intersection tests it is determined whether each vertex is inside or outside of the 

view frustum.  These spatial queries are computationally expensive and must be optimized 
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well especially in a web environment. This is where scene graphs which are explained more 

detailed in the next sections come to usage. 

Additionally, in the geospatial applications filtering is not always made according to 

camera parameters. Culling process can be done according to the results of an analysis or 

query. After an analysis and query, in order to show results to the user, only the features that 

have the desired results are selected. 

 

1.6.1.2.2. Mapping Step 

 

In this step, filtered geometry is mapped to visual representations for rendering. In 

geospatial formats, geometric data is usually stored as ordered coordinate arrays. These 

coordinate arrays are stored according to a winding order “clockwise” or “counterclockwise” 

can be seen in Figure 4. Rendering step is done using graphical APIs on the GPU and in the 

graphic APIs, geometric data is stored as vertex and index arrays (Figure 5).  Hence, in the 

mapping step, geometric data in the form of coordinate arrays is converted to vertex buffers 

and index buffers which graphic APIs accept. Thus, filtered geometric data is mapped to 

data types on the graphic API such as vertex buffer object (VBO) and index buffer object 

(IBO). Additionally, in this step, all of the other attributes that affect the appearance of the 

objects are mapped such as colour, opacity, and texture. 
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Figure 4. An object stored as coordinate sequences in a GeoJSON file. 

 

 
 
Figure 5. An object stored as vertex and index arrays in an OBJ file. 

 

1.6.1.2.3. Scene Graphs 

 

Scene Graph is a data structure, which is mainly used to describe the objects, attributes, 

and object relationships in a scene (Xu et al., 2020). Scene graph is a directed acyclic graph 

where each node represents a local space in a 3D scene. Scene graphs are constructed in a 
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hierarchical manner and contents of a node in a scene graph must be completely inside of a 

bounding volume of the parent node.  

Using the spatial and hierarchical properties of the nodes in a scene graph, filtering 

and mapping steps of the visualization pipeline can be optimized.  To better understand a 

scene graph, let’s think of it with an example. In this example we want to represent and 

display our universe as a 3D scene. To construct a scene graph, stars, galaxies, and planets 

are arranged hierarchically and can be seen in Figure 6. The current view frustum intersects 

only objects which take place in Europe (Figure 6). 

 

 
 
Figure 6. Scene graph representation of the universe. 

 
Instead of doing visibility tests for each object in the scene for frustum culling, the 

scene graph is traversed and only the contents of the nodes which intersect with view frustum 
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and its children are tested. These nodes are “Earth” and “Europe” for the given example. 

There is no need to perform visibility checks for the other nodes. If a parent is outside the 

frustum this means its children are also outside the frustum. Thus, the number of the visibility 

tests decrease significantly, and performance improves.  

Another optimization technique that can be implemented by imposing scene graphs is 

“state sorting”. State sorting is grouping objects that have similar graphical properties such 

as texture and materials into a node while constructing a scene graph. Hence similar objects 

are batched and drawn together with the least number of state changes such as set colour, set 

texture, which are expensive in GPU.   

In the scene graph, there are three types of nodes as the root node, non-leaf nodes, and 

leaf nodes. The root node represents the whole collection of objects in the 3D scene. Non-

leaf nodes are internal nodes of scene graphs. They can contain any number of children and 

represent the logical and spatial aggregation of objects. Leaf nodes are the bottom nodes in 

the scene graph, which have no children.  

Scene graphs can be constructed in two ways. One approach is to store geometry only 

in leaf nodes. At the upper nodes in the hierarchy, aggregation is done using pointers to leaf 

nodes. In the second approach, every node in the scene graph can store its own geometry. 

The first approach increases storage efficiency by storing geometry only once but requires 

traversing the scene graph at the runtime in order to find the relevant data for the upper nodes 

in the hierarchy. The second approach does not require traversing scene graphs for finding 

relevant data of the node, because every node stores its own geometry; hence, it is more 

performant than the first approach. Nevertheless, it decreases storage efficiency because 

some geometries are stored more than once. The choice between the two approaches is up 

to the requirements of the application. 

 

1.6.1.2.4. Rendering Step 

 

Rendering is the last step of the visualization pipeline. In Computer Graphics, the term 

"rendering" refers to the process of producing 2D images from a 3D scene. A 3D scene that 

is produced after the filtering and mapping steps is sent to the GPU for the render process. 

Using visual elements such as position, colour, opacity and texture, a 2D projection of a 3D 

scene is produced according to a viewpoint using graphic APIs that are compiled on the 

GPU.  
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For rendering, two small pieces of the program run on the GPU, a vertex shader, and 

a fragment shader. Vertex shader takes vertex array, index array, normals, colour, texture 

coordinates and calculates screen coordinates of vertices. A vertex shader runs once for each 

vertex of a 3D scene. Vertex shader processes three types of data; attributes, uniforms and 

varyings. Attributes are used to store information that can differ for each vertex such as 

position, colour, vertex normals, texture coordinates. Uniforms are used to store information 

that is the same for each vertex such as transformation matrices and lightning positions. 

Varyings are used to store information that is passed from vertex shader to fragment shader. 

Fragment shader runs once for each pixel of the scene. It takes information in the forms 

of uniforms, varyings, and pixels then calculates colour and depth values for each pixel. 

In WebGL, vertex shader and fragment shader are written in a language called GLSL 

(Graphics Library Shading Language) It is a C type low-level language that compiles and 

runs on GPUs.  

 

1.6.1.2.5. WebGL Libraries 

 

Not surprisingly, many JavaScript libraries have been developed on top of WebGL 

that abstract low-level coding and provide high-level APIs while still making it possible to 

enjoy the benefits of WebGL. These libraries significantly reduce the application 

development time. They automatically perform filtering, mapping and rendering steps 

according to data and parameters supplied to them. Using only WebGL without JavaScript 

libraries, many works that these libraries do under the hood must be implemented by the 

developer. For instance, lightning must be explicitly defined by implementing an 

illumination model on your own. Vertex and fragment shaders must be written in GLSL. All 

of these low-level graphical processes make WebGL very verbose. Because of this nearly 

all of the web-based 3D applications in the literature use WebGL libraries. To give a 

complete list of WebGL libraries is out of the scope of this thesis, however, it is worth 

mentioning some of them which are open source and used in geospatial applications.  

There are many WebGL libraries as well. Three.js, Cesium.js, Babylon.js, Deck.gl, 

Harp.gl, MapboxGL.js and iTowns are worth mentioning among them. Evans et al. (2014) 

have surveyed browser-based rendering approaches that include some 3D formats and 

WebGL libraries. Also, Kramer et al. (2015) tested some of the WebGL libraries on real-

world geospatial use case scenarios. Since new libraries have been developed after Kramer 
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et al. (2015) and Evans et al. (2014), a new comparative summary in terms of WebGL 

libraries has been given in Table 1. For 3D WebGIS applications, there is no one fit for all 

WebGL libraries; hence selection of the library highly depends on the use case and 

application requirements. WebGL library should be chosen by considering some key aspects 

for a 3D geospatial application such as 3D format support variety, low-level access 

capability to WebGL, WebGPU support, the capability to connect existing OGC services 

and support for 3D streaming standards. 

 

Table 1. WebGL libraries and their major capabilities. 
 
WebGL 
Library 

Support 
for glTF 

Low-Level 
Access to 
WebGL 

Support for 
WebGPU 

WFS, 
WMS 
Support 

3D Tiles or 
I3S 
Support 

 

Three.js Yes Yes Partially No No 
 

X3DOM Yes No No No No 
 

Cesium.js Yes No No Yes Yes 
 

Deck.gl Yes Yes No No Yes 
 

MapboxGL.js No Yes No Yes No 
 

Harp.gl Yes Yes No No No 
 

Babylon.js Yes Yes Yes No No 
 

iTowns Yes Yes No Yes Yes 
 

 
 
glTF is the most efficient 3D format for web applications that utilize WebGL today.  

MapboxGL.js has a big limitation for directly loading 3D models in glTF format. Thanks to 

its low-level access to WebGL, glTF can be parsed and loaded with MapboxGL.js but this 

attempt will require a lot of low-level coding which the primary purpose of the libraries is 

to avoid. In that case, filtering and mapping steps must be done explicitly by the application 
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developer. Low-level access to WebGL means the ability to create custom shaders for 

specific use cases. In this context, all of the libraries except X3DOM and Cesium.js provide 

low-level access to WebGL by allowing creation of custom shaders and give more control 

to application developers for visualization.  

Considering the WebGPU will be the new standard graphic API and supported by all 

major browsers in the near future, it is important that libraries should support WebGPU in 

terms of reusability of the previously written rendering code using these libraries.  

Another important aspect is the ability to visualize data which is published as WFS 

and WMS. This makes it possible to render DTMs which are published as WFS or WMS as 

basemaps underneath the 3DCMs. Hence, available data already published as WFS, or WMS 

can be visualized easily. This increases interoperability of the applications and makes it 

possible to use already published data in the applications. In this context, Cesium.js, 

MapboxGL.js and iTowns, which are developed geo applications in mind, support this 

feature.   

3D streaming standards define organization of the 3D geospatial data on the server and 

delivery formats for geo data. Hence, the 3D geospatial data organized according to these 

standards can be rendered by clients which supports these standards easily. When the data 

changes, the same rendering code will work perfectly as long as data is organized according 

to these standards. Otherwise, low level code that contains render logic for a hierarchical 

tileset must be coded explicitly by the application developer. 

 

1.6.1.2.6. Distribution of the Visualization Pipeline 

 

In a web application, the visualization pipeline steps described in previous sections 

could be implemented in a distributed manner. Depending on the steps that are implemented 

on the client or server, client-server architectures classified into three types in the context of 

visualization (Klimke, 2019) (Figure 7): 

1- Thick client - Thin Server: Client fetches filtered data from server and 

mapping and rendering is implemented in the client. 

2- Medium Client - Medium Server: Client fetches mapped data and renders it. 

3- Thin Client - Thick Server: The client fetches the rendered image from the 

server. All three steps of the visualization pipeline are implemented on the 

server. 
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Figure 7. Distributed Visualization Pipeline (Doyle and Cuthbert, 1998). 
 

In the Thin Client - thick server approach, since the rendering process is done in the 

remote server, the client's hardware capabilities do not affect the render performance and 

render quality. The 3D scene is rendered on the server, and the final view is sent to the client 

as an image. This approach's major drawback is that for each user interaction such as zoom 

in or rotation that modifies the view, a new view must be generated on the server and must 

be sent to the client; hence, this approach increases network overhead between server and 

client significantly. To decrease the negative effects of the increased network overhead on 

the performance, this approach requires high-end hardware on the server-side. Despite the 

powerful hardware support on the server, latency may occur in real-time applications that 

depend on heavy user interaction.  Examples for server-side rendering are Google Stadia, 

Google's cloud-based gaming platform, GeForce Now, Nvidia’s cloud-based gaming 

platform and Amazon Luna, Amazon’s cloud-based gaming platform. 
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In the thick client- thin server approach, since the rendering process is done on the 

client's machine using the client's hardware, the client's hardware capabilities significantly 

affect the rendering performance and render quality. However, in this approach, the data is 

fetched only once from the server and cached in the browser's memory. As a result of the 

user interaction, if modification of the scene does not require fetching new contents from the 

server, the new view is produced from locally cached data. Hence this approach minimizes 

the network overhead in the rendering process.  

Jankowski et al. (2013) and Evans et al. (2014) classify the visualization approaches 

into two categories as the declarative approach (retained mode) and the imperative approach 

(immediate mode) (Figure 8).  

 

 
 
Figure 8. Classification of client-based rendering methods (Evans et al. 2014). 
 

In the declarative approach, only 3D content is provided to the browser using formats 

such as X3D or glTF then the browser renders the 3D content in the background. In short, 

only "what to draw" is provided to the browser. 3D content can be rendered without 

imperative scripting. In the imperative approach, in addition to "what to render", "how to 

draw" is also provided to the browser via low-level graphic APIs such as WebGL. In this 

approach, every step of the rendering pipeline is defined explicitly, hence, gives developers 

more control over the rendering pipeline in exchange for requiring a deeper understanding 

of 3D graphics. Since every step is defined explicitly, low-level imperative scripting makes 
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the rendering process more performant; however, it slows down the process of developing 

3D applications because its low-level nature requires much more time for coding and 

debugging.  

There are some limitations in the classification of Jankowski et al (2013) and Evans et 

al (2014). Imperative and declarative approaches are not equivalent to each other and should 

not be done with a binary classification as declarative and imperative. There are many 

implementations in between. When we look at Figure 7, X3DOM has been placed as the 

declarative equivalent of WebGL however X3DOM is a JavaScript library which 

implements WebGL under the hood. There are many JavaScript libraries for 3D rendering 

with WebGL which eases development of 3D applications by freeing developers from 

writing low-level WebGL code and these libraries which makes imperative vs declarative 

classification is very difficult are not included in the table. Additionally, the scene graph is 

placed under the declarative headlines and creates the perception that there is no scene graph 

implementation with WebGL. However, there are many WebGL libraries which implement 

scene graphs.  

 

1.6.1.3. 3D Formats on the Web 

 

There are different data models that determine in which manner data can be stored, 

organized, and manipulated. One of the most common data model approaches is the 

hierarchical data model. In the hierarchical model data is organized into a tree-like structure, 

where each record has a single parent or root.  Each record is stored with its geometry and 

attributes together. Common data is repetitively stored for each record. In hierarchical data 

models, since searching for data requires traversing the entire model from top to bottom until 

the required data is found, accessing the data at the bottom of the hierarchy is slow while 

accessing the data at the top of the hierarchy is fast.  

One of the most used 3D formats which follows the hierarchical data model approach 

is CityGML. At the time of writing thesis CityGML is the only OGC standard for storage 

and exchange of the 3DCMS. CityGML is designed as an open data model and XML-based 

format for the storage and exchange of 3DCMs. CityGML defines the classes and relations 

for the most relevant topographic objects in cities and regional models with respect to their 

geometrical, topological, semantical, and appearance properties. “City” is broadly defined 

to comprise not just built structures but also elevation, vegetation, water bodies, "city 
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furniture" and more. Included are generalization hierarchies between thematic classes, 

aggregations, relations between objects, and spatial properties. CityGML is applicable for 

large areas and small regions and can represent the terrain and 3D objects in different levels 

of detail simultaneously (OGC, CityGML 2.0). 

There are two versions of CityGML, CityGML 1.0 and CityGML 2.0, which have been 

accepted as OGC Standard. At the time of writing this thesis, there is ongoing work about 

the next major version, "CityGML 3.0," and it will be released as a new OGC standard. It 

will bring several improvements and new functionalities. One of the most important 

functionalities is the new “Dynamizer” module for representing time dynamic data in 

3DCMs that is important in the context of smart cities and digital twins. The other important 

one is the new "Versioning" module that stores and represents changes in the 3DCMs. 

Detailed information about the other new functionalities and improvements can be found at 

(Chaturvedi et al., 2017), (Chaturvedi and Kolbe 2017), (Kutzner and Kolbe, 2018) and 

(Kutzner et al., 2020). 

Even though the brand new CityGML 3.0 is considered, CityGML is not an 

appropriate format for displaying 3DCMs directly in the browser. CityGML has the 

disadvantages of the hierarchical data model which it follows. It is deeply nested and 

contains data duplication (Figure 9).  

 

 
 
Figure 9. A small part of a CityGML file.  
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Deeply nested structure requires nested loops which cause intensive CPU cycles to 

parse and extract information from a CityGML file and data duplication increases memory 

usage unnecessarily.  

The other well-known 3D format which follows the hierarchical data model approach 

is X3D. It was developed and maintained by the Web3D Consortium (URL-14) and became 

an ISO standard. A small part of a X3D file can be seen in Figure 10. 

 

 
 
Figure 10. A small part of a X3D file. 
 

X3D is not as deeply nested as CityGML, however it has the same disadvantages such 

as data duplication. Duplicated vertices can be seen in Figure 10 between two objects which 

are two “Shapes” in X3D data model. 

Another common data model approach for storage and organization of the data is the 

network data model. In the network data model hierarchy between objects and the data are 

seperated. The data which belongs to all of the objects is stored globally and relevant data 

for an object is accessed using pointers. Hence, repetitive data is minimized in the network 

data model. Also, network data model is easier to update than hierarchical data model 

because a change in the geometry is automatically propagated to objects hence, objects now 

point to updated geometry now. 
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CityJSON is the network data model equivalent of the well-known CityGML. It is an  

OGC 3DCM standard candidate at the time of writing this thesis (Ledoux et al, 2019).  In 

the CityJSON Object hierarchy and geometric data is separated. Vertices are stored as a 

global array and relevant data for each record is accessed using index numbers of the record 

(Figure 11). Values of the boundaries point to vertex coordinates of a surface for an object 

in Figure 11. 

 

 
 
Figure 11. A small part of a CityJSON file. 
 

Another popular format which follows the network data model approach is glTF (GL 

Transmission Format). Cross-browser support of WebGL and widespread usage of it has 

created the need for a new 3D format that is compact, suitable to be used with WebGL and 

requires minimal processing for rendering. With these needs and goals, glTF, a new 3D file 

format, has been created by Khronos Group, also the creator of OpenGL and WebGL. glTF 

is the only 3D format which is created with WebGL in mind after the invention of the 

WebGL in this section. 

In contrast to X3D, which embeds all scene graph structures as XML elements, glTF 

separates the scene graph and geometry. Geometry is represented as a binary block 

containing vertices, indices, normals as raw byte arrays. The binary format for the block has 

been designed according to WebGL specification. Hence, the binary file can be loaded 
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directly into the client's graphic card and can be rendered using WebGL without additional 

processing.  

In glTF format, the scene graph structure and geometry are separated. Scene graph is 

described as JSON, and all of the geometry is stored as a single buffer in the binary file with 

bin extension. Buffer is stored as a little-endian blob. A subset of data in the buffer is 

represented via bufferView. A 44-byte buffer that represents a single triangle and its 

encoding in glTF is shown in Figure 12. 

 

 
 
Figure 12. Binary data and its encoding in a glTF file. 
  

Accessors in a glTF file have been used to retrieve data as typed arrays from within a 

bufferView. Using the information in the accessors and bufferViews, relevant geometric 

information for an object can be extracted from the blob. Figure 13 shows the complete glTF 

file for a triangle mesh. 
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Figure 13. glTF file and its contents. 
 

X3D standard was developed in 2003, CityGML in 2008, glTF in 2017 and CityJSON 

in 2019. 3D data formats which follow the hierarchical data model such as x3D and 

CityGML use XML for encoding and can be considered a bit out of data. In contrast, Formats 

which follow the network data model are respectively new and use JSON as encoding.  

JSON is a much more preferred format by developers over XML. The main reason for 

this is that JSON is easier to parse than XML. It does not require complex marshalling and 

unmarshalling processes. Most programming languages have built-in data types that 

correspond to key-value pairs in JSON, such as "Dictionaries” in Python, “Maps” in Java 

and Golang. Hence, there is no need for external libraries while working with JSON files. 

These native built-in data types ease the mapping of JSON content in these languages. Also, 

since its native built-in data type, any JSON file can be parsed easily with JavaScript, which 

is the most used browser-based script language. Additionally, JSON files are smaller than 

their XML counterparts. 

 

1.6.1.4. Standardization Efforts Related to Delivery of the 3D Geospatial Data 
Over the Web.  

 

A number of web service standards have been developed by OGC to deal with 

visualization of spatial data on the web in an interoperable manner. These services can be 

categorized into data services and portrayal services. Data services provide access to the 
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spatial data such as WFS and WCS, and portrayal services such as WMS deliver images of 

the spatial data not the data itself (Altmer and Kolbe, 2003). 

For 3D geospatial data OGC has published Web View Service (WVS) as “Discussion 

Paper” (Hagedorn, B. 2010) and Web 3D Service Implementation Standard (W3DS) 

(Schilling, A. and Kolbe T. H., 2010) as a Draft Specification. W3DS is designed as a “WFS 

like” data service that accesses the 3D geodata itself utilizing “GetScene” operation. For a 

decomposed dataset, W3DS specification offers  “GetTile” operation. Using GetTile request 

parameters TileLevel, TileRow and TileCow the relevant tile is fetched from the server. For 

visualization of a specific area, mapping between camera parameters and tile request 

parameters are missing in W3DS.  Tiling related problems such as object integrity during 

decomposition, definition of the data structure, tile size and update of the tileset are not 

addressed in W3DS.  

Unlike W3DS, WVS is designed as a “WMS like” portrayal service that delivers a 3D 

rendered image of the data, not the data itself utilizing “GetView” operation. Tiling and 

tilesets are neglected in WVS. Management of a tileset  is proposed as a  “future work”.  

In 2012, OGC published 3D Portrayal Interoperability Experiment (3DPIE) Final 

Report (3DPIE final report, OGC, 2012). In this 3DPIE activity, different use case scenarios 

for service-based streaming of 3D geospatial data were implemented and tested using OGC 

drafts for the candidate standards W3DS and WVS. Three different tests have been carried 

out. In the first test, the whole CityGML data was fetched from the server and visualized on 

a thick client. The purpose was to test the display of the CityGML directly on the browser. 

Fetching and parsing the entire CityGML file and applying filtering, mapping and rendering 

steps caused significant latency and performance issues on the client. Therefore, after this 

test, pre-process and tiling of the CityGML file has been suggested as a result of the test. In 

the second test, the entire CityGML data pre-processed in the server using JAXB (Java Xml 

Binding) based parser and tiled into regular tiles. Hence, only the visible tiles have been 

fetched from the server, progressive visualization has been accomplished based on the 

camera parameters provided by the client. In the third test CityGML format has been 

converted to JSON and visualized on the client using Three.js. For fetching the tiled 3DCM, 

GetTile operation of the W3DS has been used in the tests in 3D PIE. Although CityGML 

has been decomposed into regular tiles, how object integrity is maintained is not discussed. 

Other tiling related problems such as choice of the data structure, tile size definition, and 

how the tileset can be updated are not addressed as well. 
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After the interoperability tests and engineering reports essential parts of the W3DS and 

WVS have been combined into one common service as “3D portrayal, hence 3D Portrayal 

Service Standard (3DPS) published in 2017 (3DPS, 2017). 3DPS defines a standard service 

interface for web-based 3D geodata portrayal. Two major operations are described in the 

standard as “GetScene” operation and “GetView” operation. GetScene operation allows a 

client to request and retrieve a scene graph in a standard data format from a 3DPS service. 

The fetched data from the server is rendered on the client’s machine. Supported formats are 

X3D, VRML, Esri I3S and glTF. In contrast to GetScene operation, GetView operation 

allows a client to retrieve rendered images of a 3D scene based on the parameters defined in 

the request. The rendering process is done on the server-side, and the rendered image is 

fetched from the server. Supported image formats are PNG and JPEG. Although tiling is 

suggested and pointed as future work in previous works, GetTile operation in the W3DS has 

been deprecated in the 3DPS. The reason was that according to OGC there is no one-size-

fits-all solution for tiling 3D geodata (3DPS, 2017). Hence, tiling and tiling related problems 

have been completely excluded in 3DPS. 3DPS focuses on the way of communication 

between server and client for streaming of the 3D geospatial data on the web by defining 

service interfaces, operations, request, and response parameters rather than tiling and 

handling of the tilesets.  

Then for the tiling of the 3D geospatial data and streaming of the tileset, OGC has been 

published two standards, 3D Tiles and Indexed 3D Scene Specification (I3S) Indexed 3D 

Scene Specification (URL-15) developed by ESRI and 3D Tiles specification developed by 

Cesium (URL-16). Both specifications are open and optimized for streaming and rendering 

3D geospatial data over the web. The foundation of these specifications is spatial hierarchical 

data structures. Although I3S is an open standard, it is generally used by ESRI products. 

There is no open-source software or component that generates a tileset according to I3S. It 

is only used in a few applications (Koukofikis et al., 2018). On the other hand, 3D Tiles has 

been started to be used by many commercial and open-source software components. These 

components have been described in section 2.3 “Related Work”. For its open nature, 3D 

Tiles has been selected and implemented while developing web components in this thesis. . 

3D Tiles is based on a spatial data structure that enables the Hierarchical Level of 

Detail (HLOD); hence, only visible tiles are streamed for a given 3D view (3D Tiles 

Specification, 2019). 
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The specification supports many spatial data structures such as k-d trees, quadtrees, 

octrees, r-trees, and many others as long as the data structure is a hierarchical tree. To decide 

which data structure will be used for tiling is the burden of the developer. In 3D Tiles, a 

tileset is a set of tiles organized in a hierarchical spatial data structure, and a tile is a node in 

this data structure. The hierarchy and metadata about tiles are described in a file called 

“tileset.json”. 

After 3D Tiles, OGC continues to do a lot of work for standardizing service-based 

delivery of 3D geodata on the web through a series of engineering reports. OGC published 

a draft specification for 3D geodata API that organizes access to a variety of 3D datasets 

according to a nested hierarchy of 3D geo data. (OGC API-Tiles-3D Engineering Report, 

2020). In this 3D GeoVolumes also called 3D Container work, OGC tries to standardize API 

access to tiled 3D geodata resources by standardizing URL definitions for HTTP Get 

methods of REST APIs.  

If the standards mentioned throughout this section are evaluated, it will be seen that 

3D Tiles and I3S standardize organization of the 3DCMs on the server by utilizing 

hierarchical data structures and different delivery formats. 3DPS standards the way of 

communication between the server and the client in the context of 3D geospatial data. 

Finally, 3D GeoVolumes try to standardize the way of the access to 3D geo data on the web 

by defining standard URL paths for HTTP methods. 

As can be seen, standardization efforts continue and although there are brand new 3D 

standards, interoperability is not a solved problem for web-based management of the large- 

scale 3D geospatial data. 



2. CHAPTER 2 TILING, STREAMING AND DISPLAY OF 3D GEOSPATIAL 

DATA ON THE WEB 

 

2.1. Introduction 

 

For streaming and visualization of 3D geospatial data, the data is decomposed into 

multiple tiles. As needed, relevant tiles are sent over the network and processed by client 

components. Streaming and displaying only the most relevant data decreases the amount of 

the data transmitted and improves performance significantly. Nevertheless, tiling 3D 

geospatial data are respectively new and works on the topic are rare. While tiling improves 

performance, it creates many other problems revolving around generation and management 

of the tileset. 

While generating 3D tileset, decomposition of the 3D geospatial data is made 

according to a data structure. Some data structures are better for analyses and spatial queries 

while others are preferable for data visualization. In this context, the data structure should 

be selected according to the purpose of the operations such as spatial query or visualization. 

After the decomposition, all of the operations are performed through the selected data 

structure by traversing the data structure, finding relevant tiles, and performing operations 

on the contents of those tiles. Hence, performance of the operations is really dependent on 

the selection of the data structure.  During the generation of the tileset, some city objects 

may intersect with multiple tiles at the tile borders and unity of city objects may be 

compromised. This makes data management difficult across the tiles. After the generation 

of the tileset, tileset may need to be updated. Adding new contents to the tiles may exceed 

tile size threshold and boundaries of the new contents may intersect multiple tiles. For 

performant update operations, these operations must be handled by updating only affected 

tiles without re-generating the whole tileset. Decomposition of the 3D geospatial data into 

smaller tiles is done based on a tile size threshold. Reducing the tile size increases the number 

of tiles.  Since the increase in the number of tiles increases the number of HTTP requests for 

fetching tiles from the server and overall network usage thus decreases performance. On the 

other hand, increasing tile size increases the amount of the data to be streamed and degrades 

the performance. Hence there is a trade-off while determining the tile size.   
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All of the problems mentioned so far are tackled and solved in this chapter by 

designing and developing a web framework using current 3D geospatial standards. The 

components of the framework developed as a SaaS (Software as a Service) tool. The 

developed tool consists of two RESTful web services. One service is responsible for the 

generation of 3D tileset from a 3D geospatial data resource, and the other service is 

responsible for display of the generated 3D tileset. Both of the services are also support 2.5D 

vector terrain data as well for tiling and visualizing along with 3DCMs. While developing 

services, the 3D Tiles standard is also implemented in order to guarantee interoperability of 

the developed framework with other software components.  

 

2.2. Related Work 

 

In this section, 13 academic works and 6 software components about the tiling of 3D 

geospatial data have been investigated in the terms of tiling scheme, tile size, object integrity, 

update of the tileset and implementation of the 3D standards. These works and their 

limitations are explained in more detail below. Also, summary of the investigated works can 

be found in Table 2 and summary of the investigated components can be found in Table 3. 

Gesquiere and Manin (2012) developed a client-server architecture for visualizing 

CityGML data on the web. They parsed the CityGML file using C++ library libCityGML 

and converted CityGML data into several regular tiles (Figure 14). Extracted geometry and 

semantic information of the city objects stored in the JSON files on the server. Tiles have 

been fetched and visualized on the client’s browser based on camera parameters using 

WebGL. This work uses regular tiling without a hierarchy. 3DCMs have been converted into 

rectangular shaped tiles. The major drawback of these methods is that the distribution of 

buildings in 3DCMs is heterogeneous; hence, in some areas, there are much more city 

objects than others and the regular tiling approach is lack hierarchical subdivision, hence, 

does not consider density of objects in the city and creates heterogeneous size of tiles. The 

lack of the hierarchy obscures taking the advantage of the scene graphs for optimizing 

filtering and mapping steps of the visualization pipeline. Since in the regular tiling each tile 

is in the same level, visibility checks must be done for each city object in each tile. Reducing 

the number of the visibility checks for frustum culling, is not possible in this regular tileset. 

The other drawback of regular tiling is that objects may intersect with multiple tiles on the 
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tile borders and since the unity of a building can be compromised, this makes object 

management difficult between tiles. The tiling process is performed as offline mode on a 

desktop. After the generation of the tileset, tiles are visualized in online mode. Additionally, 

any of the web-based 3D standards are not implemented and that makes interoperability of 

the work rather limited.  

 

 
 
    Figure 14. Regular tiling of the CityGML dataset (Gesquiere and Manin, 2012) 
 

Prandi et al. (2013) developed a smart city platform and deployed various smart city 

services which require tiling. They use regular tiling and the tiling process is not web-based 

as Gesquiere and Manin (2012). Hence their work has the same  limitations as Gesquiere 

and Manin (2012). Visualization pipeline is not optimized well because of the lack of the 

hierarchy between tiles and there is no solution about determination of the tile size or 

preserving the object integrity.  

Chaturvedi et al (2015) developed a web-based 3D client for 3DCityDB in order to 

visualize CityGML data in the browser. In this work, a regular tiling method has been 

implemented in order to visualize large scale CityGML data progressively (Figure 15). 

Visualization is done using Cesium.js. 3DCityDB is not a web component and needs to be 

installed on a desktop. Hence, Chaturvedi et al (2015) has the same limitations with previous 

works. Buildings intersected with multiple tiles can be seen in Figure 7 and how the integrity 

of these objects can be preserved is not addressed. Same is true for tile size, updating the 

tileset . Additionally none of the 3D standards has been implemented.  

In his MSc. Thesis Willenborg (2015) converted CityGML geometry to voxel 

representation and made simulation of explosions in urban space. Simulation results were 

stored in the PostgreSQL database using 3DCityDB and results visualized in the browser 
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using Web Map Client of the 3DCityDB. Hence, this work has the exact same limitations as 

Chaturvedi et al (2015).  

 

 
 
Figure 15. Regular tiles can be seen in the web map client of 3DCityDB 
 

Kilsedar et al (2019) visualized 3DCM on the web using 3DCityDB and the web-map 

client of 3DCityDB. They developed a component called shp2city in order to convert 3D 

data in the Esri Shapefile format to CityGML. Then, they processed CityGML data using 

3DCityDB and extracted geometry visualized using the web-map client of 3DCityDB.  

Gaillard et al. (2015) developed a framework for visualizing 3DCMs on the web. The 

CityGML file has been converted into JSON and the whole dataset is also decomposed into 

several fixed sized regular tiles. Then progressive visualization is accomplished using 

Three.js library. They developed a rendering strategy based on the regular data structure 

(Figure 8).  Based on the camera parameters, tiles have been rendered in different LODs. 

The tile that consists of point of view (POW) rendered with high detailed buildings and DTM 

(red tile), the neighbour tiles are rendered with low detailed buildings and DTM (red tiles 

with green buildings) and neighbour of the neighbour tiles are rendered without buildings 

and only includes DTM. This work has the limitations of the regular tiling mentioned for 
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previous works above. Buildings intersected with multiple tiles can be seen in Figure 16. 

Additionally, the proposed rendering strategy works for only with regular tiling. It is difficult 

to implement this rendering strategy with hierarchical data structures. Because finding 

adjacent tiles is more difficult and there may be too many adjacent tiles in hierarchical data 

structures. 

 

 
 
Figure 16. Rendering Strategy for Progressive Visualization (Gaillerd et al., 2015) 
 

Krämer and Gutbell (2015) developed 3D geospatial applications and tested WebGL 

frameworks such as Three.js, Cesium.js and X3DOM. They converted CityGML data into 

X3D and tiled CityGML into several rectangular  tiles. They developed a simple streaming 

algorithm and loaded tiles into browser memory on demand based on camera parameters 

(Figure 17). This work also suffers limitations of the regular tiling. The proposed streaming 

algorithm works only for regular tiling. Hierarchical data structures are difficult to 

implement with this streaming algorithm. Additionally, any of the 3D standards is not 

implemented in this work. 
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Figure 17. Streaming algorithm loads additional tiles and removes that are not       
visible based on camera position (Krämer and Gutbell, 2015). 

 

With the arrival of the 3D standards, researchers also tried to solve tiling and 

displaying large scale 3D geospatial data by implementing 3D standards in order to achieve 

interoperability. 

Gutbell et al (2016) developed a framework for server-based rendering of 3DCMs 

using 3D Portrayal Service Standard. Unity game engine and Blender 3D modelling software 

in order to visualize rendered images on the client, both of the software are desktop 

applications which require additional software installation on desktop. Since this work uses 

server-based rendering, every interaction on the client requires re-rendering the scene and 

fetching the new rendered image from the server which increases overall network usage and 

causes latency on the client. 

Klimke (2019) developed a framework for web-based provisioning and application of 

large-scale virtual 3DCMs. They used 3D Portrayal Service Standard for server-based 

rendering of the framework. Since these studies use server-based rendering, every interaction 

on the client requires re-rendering the scene and fetching the new rendered image from the 

server which increases overall network usage and causes latency on the client.  

Koukofikis et al (2018) developed prototype implementations for interoperable 

visualization of 3DCMs using 3D Portrayal Service Standard. They tested and validated 

interoperability of the 3D Portrayal Service Standard using 3D Tiles and I3S streaming 

standards in urban-centric use cases using CityGML data.  For tiling 3DCMs they used 

commercial software components from Cesium ion, ESRI and FME. They used different 

software components which did not communicate with each other, hence requiring a lot of 
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user interaction during the workflow. Additionally, software components are commercial 

and not web based except Cesium ion. 

Gaillard et al (2020) presented a new method for visualization and personalization of 

3DCMs which supports multi-scale resolution of 3DCMs using 3D Tiles standard. The 

3DCM has been tiled in the pre-processing step according to 3D Tiles standard and the 

generated tileset has been stored in a relational PostgreSQL database. Based on the user 

defined rules on the client, the scene graph is generated on-the-fly on the server and fetched 

to the client. The major drawback of the proposed method was that even small updates on 

the 3DCM or ruleset requires the re-generation of the whole scene graph and re-generation 

of the tileset. Another drawback of this study was the tiling method. The tiling process and 

generation of the hierarchical tileset has been done using road-network. The buildings 

adjacent to the main roads are placed in the higher tiles in the hierarchical tree while 

buildings adjacent to the side roads are placed in the lower tiles. This tiling method does not 

represent the size of the data. Hence, this situation can lead to tiles in heterogeneous file 

sizes. A more precise tiling method which represents data size accurately based on the actual 

size of the data must be implemented in order to balance tile sizes. 

Lu et al (2020) has visualized real-time large-scale weather data using 3D Tiles 

streaming standard. The point-based weather data has been tiled using octree which is a 

hierarchical data structure and visualized tiles using Cesium.js. This study only supports 

tiling and visualization of point clouds, not other types of the 3D geospatial data. 

Jaillot et al (2020) has visualized time-dynamic data along with 3DCMs on the web 

by extending 3D Tiles standard. The 3DCM has been tiled using py3dtiles open-source 

software component. This component is a python library in order to convert 3DCMs in the 

CityGML format to 3D Tiles. The drawback is that py3dtiles is not a web-based component. 

A summary of the related work can be found in Table 2. 
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Table 2. Summary of the related Works 
 

Related Work Tiling 
Scheme 

Rendering Object 
Integrity 

Implementation of 
Standards 

Gesquiere and 
Manin (2012) 

Regular Client No No 

Prandi et al. (2013) Regular Client No No 

Chaturvedi et al 
(2015) 

Regular Client No No 

Willenborg (2015) Regular Client No No 

Gaillard et al. 
(2015) 

Regular Client No No 

Krämer and Gutbell 
(2015) 

Regular Client No No 

Gutbell et al (2016) - Server Yes WVS 

Koukofikis et al 
(2018) 

Hierarchical Client Yes I3S, 3D Tiles, 3DPS 

Kilsedar et al (2019) Regular Client No No 

Klimke (2019) Hierarchical Server Yes 3DPS 

Gaillard et al (2020) Hierarchical Client Yes 3D Tiles 

Lu et al (2020) Hierarchical Client Yes 3D Tiles 

Jaillot et al (2020) Hierarchical Client Yes 3D Tiles 
 
 
When we look at the software components for tiling and visualizing 3DCMs on the 

web, there is no web-based solution as open-source software components. obj23dtiles is an 

open source Node.js module in order to convert 3d data to 3D Tiles. obj23dtiles (URL-17) 

is based on another open source Node.js module obj2gltf which has been developed by 

Cesium. The major drawback of the obj23dtiles is that it does not construct a hierarchy from 

data, hence does not implement a tiling method. It only converts the whole 3DCM in the obj 

format to b3dm format. Another open source Node.js component is citygml-to-3dtiles (URL-

18) which has the same drawback as obj23dtiles. It only converts CityGML data to b3dm 

format without implementing a tiling method. The most mature open-source component is 
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py3dtiles which converts CityGML data to 3D Tiles by tiling data and constructing a 

hierarchical tileset from it. Py3dtiles is not a web-based solution and must be installed as a 

standalone software component. At the time of writing this thesis it supports only glTF 1.0 

hence it cannot handle glTF 2.0 3D models. FME, VirtualCityPublisher and Cesium ion are 

commercial software components for tiling 3DCMs according to 3D Tiles. FME has a 3D 

Tiles writer that tiles 3D geospatial data for generation of the hierarchy, it uses object count 

as a parameter. Each city object has a different number of vertices and indices hence, each 

city object differs in size. Tiling, based on object count causes heterogenous tile sizes. A 

more precise tiling method which represents data size accurately such as vertex count and 

index count must be implemented in order to decompose data more efficiently. A summary 

of the capabilities of the software components can be found in Table 3. 

 

Table 3. Summary of the software components. 
 
Software 
Components 

Type Licence Hierarchical 
Tiling 

Support for 
Updating 
the tileset 

Support for 
3D 
Standards 

FME Desktop Commercial Yes No 3D Tiles 

Cesium ion Web-
Based 

Commercial Yes No 3D Tiles 

Virtual City 
Publisher 

Web-
Based 

Commercial Yes No 3D Tiles 

py3dtiles Desktop Open 
Source 

Yes No 3D Tiles 

obj23dtiles Desktop Open 
Source 

No  No 3D Tiles 

citygmlto3dtiles Desktop Open 
Source 

No No 3D Tiles 

 
 
When the current studies in the literature and existing software components are 

examined, some limitations are observed. First, most of the works in the literature uses 

regular tiling without constructing a hierarchy which makes it impossible to optimize 

filtering and mapping steps by imposing scene graphs. Additionally decomposing a whole 

dataset to prefixed tiles causes compromising object integrity at the tile borders. None of the 
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works has investigated how this problem can be solved. Another important limitation is that 

none of the works or components so far support update of the generated tileset without re-

generation of the tileset. Most of the proposed works require user intervention at some point 

in the proposed work flows hence, most of the proposed solutions are not fully automated 

which limits the reusability of the proposed methods. Additionally, there is no fully 

automated web-based open-source solution for tiling and visualizing 3D geospatial data. 

These limitations have been attempted to be eliminated by proposing the new methods which 

are described in the following sections of this chapter.  

 

2.3. Methodology 

 

2.3.1. Decomposition of the 3D Geospatial Data 

 

2.3.1.1. Determination of the Tile Size 

 

Tile size determines the amount of the data to be transmitted from server to client for 

a tile and directly affects the render quality. A client should be able to render and display the 

contents of a tile without any lag and without degrading the rendering performance. 

Rendering performance is measured as frame per second (fps) which is the number of 

rendered images per second. In the game industry and computer graphics 60fps is accepted 

as “good” rendering performance and 60 fps value is selected as the minimum acceptable 

rendering performance while determining the tile size. Since rendering is done on the client 

in our application, rendering performance is highly dependent on the client’s hardware. In 

order to establish mapping between rendering performance and the tile size, data threshold 

tests are performed using a computer that has a low-end GPU. The reason for choosing a 

computer with a low-end GPU is to guarantee the 60fps even with such computers. Table 3 

shows the specs of the test machine. 

 

Table 4. System Specifications of the Test Machine 
 

Intel i5 1.8Mhz Turbo Boost CPU 

4GB DDR3 RAM 

Intel HD Graphics 4000 GPU 
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The tests started with a single LOD1 block model and fps is monitored at runtime. 

Data density is increased by adding new detailed city objects. With addition of the new 

vertices and indices by adding new objects fps started to drop.  When the data reached 180 

kb fps started to drop to under 60 fps while rotating objects. Hence, 180 kb is determined as 

the tile size threshold. Since a float value is 4 bytes, the total size of an object is calculated 

based on the vertex and index counts by using the following formula 2.1. “SoV” stands for 

size of the vertices and “v” stands for vertex count.  

 

𝑆𝑜𝑉 = 𝑣 ∗ 3 ∗ 4 (2.1) 

 

Since an index value is represented as 2 bytes integer value, total size of the indices 

has been calculated using the following formula 2.2. “SoI” stands for size of the indices and 

“i” stands for index count. 

 

𝑆𝑜𝐼 = 𝑖 ∗ 3 ∗ 2 (2.2) 

 

Since vertex normals are stored for each vertex as float x, y, z values, vertex size 

multiplied by 2 in the formula 2.3 to consider size of the vertex normals. Thus tolal size of 

the data “T” is calculated as in the following formula (2.3) 

 

𝑇 = 2 ∗ 𝑆𝑜𝑉 + 𝑆𝑜𝐼 (2.3) 

  

2.3.1.2. R-Tree Decomposition 

 

R-Tree is based on recursive decomposition of data into two branches at each level 

with respect to a “tile size” threshold. That is, the decomposition of the nodes continues until 

each node complies with the threshold. Spatial coherence (3D Tiles, 2018) the enforcement 

that the content for child tiles is completely inside the parent's bounding volume must be 

incorporated into tiling procedure. One way of ensuring spatial coherence would be to use 

bounding rectangles and bounding volumes for 2D and 3D respectively. 

R-Trees can be constructed by either bottom-up or top-down methods. The top-down 

method starts with decomposing the root into two nodes first. These nodes contain farthest 

objects to be tiled. A way of computing the farthest objects is explained in Guttman (1984). 
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By “bounding rectangle enlargement” for 2D data and “bounding volume enlargement” for 

3D data, new objects to be included in either of the two tiles are computed. The tile with the 

minimum area or volume when the new object is enclosed is the right tile to include the new 

object.  

A top-down R-Tree tiling has been implemented in this thesis. And the “tile size 

threshold” was set to “180kb”. Then nodes are populated with new objects via bounding 

volume enlargement. After all the remaining objects added to these two nodes, the threshold 

is checked; if it is exceeded then the node is subdivided into two nodes. This routine repeats 

itself until all the nodes comply with the threshold. Thus, 3D geospatial data is decomposed 

into a hierarchical data structure (Figure 18). Pseudo code for the construction of the R-Tree 

can be found in Figure 19. 

 

 
 
Figure 18. 3D geospatial data decomposed to R-Tree structure 
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Figure 19. Pseudo code for R-Tree construction 
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During the creation of the R-Tree, bounding boxes of the nodes are updated with the 

bounding box of the features that were added to these nodes. Since bounding boxes of the 

nodes can overlap each other, object integrity is preserved (Figure 20).  

 

 
 

Figure 20. Tile borders overlap and features are always completely inside of a node. 
 

2.3.1.3. Adaptive QuadTree Decomposition 

 

QuadTree is based on recursive decomposition of data into four equal branches at each 

level with respect to a “tile size” threshold. That is, the decomposition of the nodes continues 

until each node complies with the threshold. QuadTree construction starts with decomposing 

the root node into four equal sized children. Then features are added to the child nodes and 

threshold is checked for each one of four child nodes. If any of the child nodes exceeds the 

threshold, it is decomposed to four equal child nodes. This process continues recursively 

until each node complies with the threshold.  

For QuadTree construction “tile size threshold” is set as “180kb” as in the R-Tree 

decomposition. If the 3D model to be tiled exceeds the 180kb then it is decomposed into 

four nodes. Then nodes are populated with new objects. After all the remaining objects added 

to these four nodes, the threshold is checked; if it is exceeded then the node is subdivided 

into four nodes. Thus, 3D geospatial data is decomposed and converted into hierarchical data 

structure (Figure 21). 
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 Figure 21. QuadTree decomposition of the 3D geospatial data. 
 

In QuadTree, nodes are decomposed into four pre-fixed rectangular or square tiles. 

Tile borders are not calculated dynamically as in the R-Trees while adding new objects to 

the nodes. Hence, some objects may intersect multiple tiles at tile borders. In order to prevent 

object integrity, unlike as in the traditional quadtrees, intersection volume is calculated for 

each tile that object intersects. Then the object is added to the tile that has the intersection 

volume the most and the borders of that tile is updated adaptively to contain the newly added 

object (Figure 22). Construction of the Adaptive QuadTree is shown in Figure 23. 

 

 
 

Figure 22. Updating tile borders in order to preserve object integrity. 
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Figure 23. Pseudo code for Adaptive QuadTree construction 

 

2.3.2. Updating 3D Tileset 

 

Updating tileset means adding new features to relevant nodes or removing existing 

features from nodes in the data structure. In order to update without re-construction of the 

tileset, two main operations are performed: 

• Traverse data structure and find affected nodes 

• Add features to these nodes or remove features from these nodes 

While these operations are performed, first, the tile size threshold must be checked and 

if it exceeds relevant nodes must be decomposed to new child nodes. Then bounding boxes 

of the affected nodes must be re-calculated. For updating R-Tree and Adaptive Quadree, 
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although these general steps are the same, there are minor differences between these two 

data structures in the implementation. 

 

2.3.2.1. Adaptive New Features in R-Tree 

 

For adding a feature to a node, first, data structure is traversed from top to bottom and 

leaf nodes are found. Then it is decided which leaf node the feature is added based on 

minimum volume enlargement value. Minimum volume enlargement value is calculated 

between the feature to be added and the leaf nodes. Then, the feature is added to the node 

that requires minimum volume enlargement value. Figure 24 shows the pseudo code for 

adding new features in R-Tree. 

 
 

 Figure 24. Pseudo code for adding new feature in R-Tree 
 

2.3.2.2. Adding New Features in Adaptive QuadTree 

 

For adding a feature to a node, first, data structure is traversed from top to bottom and 

the relevant node is found. Then the feature added to this node and tile size threshold is 

checked. If it is exceeded the relevant node is decomposed to four child nodes.  Then features 

of the relevant node distributed to child nodes. Figure 25 shows pseudo code for adding the 

new feature in Adaptive QuadTree. 
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 Figure 25. Pseudo code for adding a new feature in Adaptive  

QuadTree 
 

2.3.2.3. Removing Features in R-Tree and Adaptive QuadTree 

 

Removing a feature is algorithmically the same for both R-Tree and Adaptive 

QuadTree. To remove a feature from a Node, data structure is traversed and the relevant 

feature is found in the node hierarchy. Then the feature is removed from that node. After the 

removing process, the tile size threshold is checked and if possible, the relevant node is 

merged with its siblings to parent. Figure 26 shows the pseudo code for removing a feature. 

 
 

Figure 26. Pseudo code for removing a feature in R-Tree and  
Adaptive QuadTree 
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2.3.3. Implementation of the 3D Tiles Specification 

 

In 3D Tiles, hierarchical information and metadata about tiles are encoded to a JSON 

file called “tileset.json”. Thus, the tileset.json file is consumed by the client implementation 

at the runtime and the scene graph is derived for the visualization pipeline of the application. 

To generate tileset.json file hierarchical information that is derived from decomposition is 

encoded into a JSON file (Figure 27). 

 

 
 

Figure 27. A part of a tileset.json file that describes 3 levels hierarchy 
 

According to 3D Tiles specification, tile definition includes a “Bounding Volume”, a 

“Refinement”, a “Geometric Error” and a “Content” in 3D Tiles. Bounding Volume is a 3D 

axis aligned minimum bounding box that encloses the tile. Refinement is the type of the 

refinement method that determines the refinement process. Geometric Error is a metric in 

meters that is used by the client engine to decide the refinement process. Content is a little-

endian binary blob that contains the scene data which is a subset of the scene graph and 

encoded into a file with extension ”b3dm”. Content, also contains an “uri” that points the 
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path of the scene graph data file and a bounding volume. Figure 28 shows the UML class 

diagram for a tileset in 3D Tiles. 

 

 
 

Figure 28. UML Class Diagram for A Tileset in 3D Tiles 
 

2.3.3.1. Generation of the Tile Content 

 

Content of a tile refers to both geometric and attribute data of the features of the tile. 

In 3D Tiles, contents of a tile are stored in a format called B3DM (Batched 3D Model). In 

b3dm format, geometry of the features are stored as glTF, non-spatial attributes are stored 

in “Feature Table” and “Batch Table”. glTF, feature table and batch table together form the 

b3dm file thus, both spatial and non-spatial properties of the features are represented in the 

b3dm file.   

In the feature table, semantics which are “BATCH LENGTH” and “RTC_CENTER” 

are stored. Batch length is the number of features in the tile and rtc_center is the coordinates 

of the center of the tile in the earth centered earth fixed EPSG 4979 coordinate system. In 

the batch table, non-spatial attributes of the features are stored along with feature ids. 

The reason for the additional tables to store the contents of a tile is that 3D formats 

which have been investigated in Chapter 1 such as glTF and X3D focus on storing graphical 

elements which are consumed by WebGL; they do not support non-spatial attribute data. 
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While decomposing 3D geospatial data into tiles, for each tile, contents of a tile have 

been written into a single b3dm file. By batching multiple 3D models into a single file, 

multiple 3D models can be transmitted with a single request and in the visualization pipeline, 

they can be rendered with the least number of WebGL draw calls. 

To create b3dm files for tiles, vertices, indices, and vertex normals are encoded as 

glTF, then, relevant feature tables and batch tables are encoded. 

 

2.3.3.1.1. Triangulation of the 3D Polygon Surfaces 

 

WebGL uses points, lines and triangles as geometric primitives in order to render 

objects. Thus, 3D polygonal surfaces of the objects in a 3D geospatial data must be 

triangulated to display them via WebGL. For this purpose, a 3D polygon triangulation 

algorithm Ear-Clipping is implemented using earcut4j open-source java library (Figure 29). 

 

 
 

Figure 29. 3D polygon surfaces (left), triangulated polygons 
(right) 

 

2.3.3.1.2. Calculation of Vertex Normals 

 

Vertex normals are needed in the rendering step for lightning and calculation of the 

colours of the pixels. Without vertex normals individual surfaces of the 3D models can not 

be distinguished (Figure 30). 
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Figure 30. Rendering without vertex normals (left) and with vertex normals (right) 
 

Vertex normals are calculated using surface normals. Surface normal is a unit vector 

that is perpendicular to the surface. Surface normals are calculated using vertex coordinates 

and vector math. After calculation of surface normal for each triangle, vertex normals are 

calculated as the sum of surface normals which the vertices belong to. After calculation of 

vertex normals, vertex normals have been added to the b3dm file for each tile. 

 

2.3.3.1.3. Clamping to the Terrain 

 

3D geospatial data cannot be considered independent of the terrain, for a realistic 

visualization, buildings must be placed on the digital terrain models (DTM). Most of the 3D 

geospatial dataset is not aligned to a digital terrain model or have pre-calculated heights 

according to a different DTM. In such situations height differences may occur between 3D 

city models and DTMs hence, heights of the city objects must be aligned according to the 

DTM (Figure 31). 
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Figure 31. Buildings over the terrain (top), buildings clamped to the terrain (bottom) 
 

In order to clamp buildings to the terrain, first, building footprints intersected with 

DTM then, an offset along the z axis is applied until the min z value of building footprint 

matches the min z value of the intersected pixels. Thus, buildings have been clamped to 

terrain during the tiling. 

 

2.3.3.2. Calculation of the Geometric Error for A Tile 

 

Client implementation will need to determine if a tile is sufficiently detailed for 

rendering or it must be refined by its children. This decision is made using the geometric 

error value of the tile. For a tile, the geometric error is used to determine whether the children 

of the tile should be rendered.  At runtime client rendering engines calculate space screen 

error (SSE) using the geometric error value of the tile according to the following formula 

(2.4). If the SSE exceeds a pre-defined threshold value, children of the tile are rendered; 

hence, geometry is refined with a higher level of detail. 

There is no formula for calculation of the geometric error value in 3D Tiles 

specification, hence, a formula has been produced and tested with our datasets. Root tile that 
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has the most simplified geometry, should have the maximum geometric error value, then this 

value should gradually decrease in each level of the hierarchy and should be zero at leaf tiles 

that have the highest level of detail. According to this logic, the following formula has been 

developed to calculate the geometric error value of the tiles. For a given tile Ti, geometric 

error of Ti, 

 

𝐺! = 𝐺!"# − 𝐺/𝐿 (2.4) 

 

𝐺! stands for geometric error of a tile, G stands for geometric error of the root tile and 

L stands for the level of the tile. Based on the 𝐺! value, at runtime SSE value can bu 

calculated as following formula (2.5). 

 

SSE =( 𝐺!x screenHeight) / (tileDistance x 2 x tan(fovy/2)) (2.5) 

 

“screenHeight” stands for the height of the screen in pixels, “tileDistance” stands for 

the distance of the tile from eye point, “fovy” is the vertical fov angle of the viewing frustum 

in radians. Relationship between geometric error and space screen error is shown in Figure 

32. 

 
 
Figure 32. Relationship between geometric error and space screen error (URL-19). 
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2.3.3.3. Refinement Method 

 

There are two different refinement methods in 3D Tiles. Supported refinement 

methods are replacement and additive. In the replacement method, child tile is rendered and 

the parent is no longer rendered. In the additive method, child tile is rendered in addition to 

the parent. Root tile (blue)  and its child (pink)  is rendered as “additive” as shown in Figure 

33. 

 

 
 
Figure 33. A tile and its child rendered using additive method 
 

2.3.3.4. Display of the Tileset on the Browser 

 

For a 3D tileset that is decomposed according to 3D Tiles, at first, the tileset.json file 

is loaded by the client in order to extract the scene graph of the tileset. Utilizing the scene 

graph, intersection between the bounding volume of the root tile and view frustum is tested. 

If the bounding volume of the root and view frustum intersects, content of the root is 

considered for rendering. Then the bounding volumes of the childs are tested against the 

view frustum. Whichever child intersect, their b3dm files are fetched and loaded from the 

server (Figure 34). 
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          Figure 34. View Frustum and tiles (URL-19) 
 

When the user zooms in or zooms out to the tileset, since the distance between camera 

and the tile changes, a new SSE value is calculated at runtime using the formula (2.2). If 

SSE exceeds a pre-defined value, then the next level of tiles is considered for rendering. 

Then, next level childs are tested against the current view frustum and only intersected ones 

are loaded and rendered according to the refinement method (Figure 35).  
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 Figure 35. View frustum and tiles (URL-19) 
 

Above mentioned rendering strategy based on scene graph, geometric error and SSE 

value work well with all hierarchical data structures contrary to rendering strategy of 

Gaillard et al. (2015) and (Krämer and Gutbell, 2015).  

 

2.3.3.5. Handling of Varying Level of Details (LODs) 

 

For a multi LOD dataset, a multi-representation refinement method has been 

developed. While interacting with a 3D tileset, if the user zooms in to a tile, while child tile 

is rendered as in the previous topic, resolution of the parent tile is increased, and a higher 

level of detail is rendered in place of the current parent. Such an approach cannot be 

implemented with the current status of the 3D Tiles standard at the time of writing the thesis. 

Because, in tileset.json file content of a tile is pointed out using a single uri. Multiple LoD 

of a 3D object cannot be stored in a single b3dm file. Hence, in order to implement the 

proposed approach, the 3D Tiles standard has been extended. Up to 4 varying numbers of 

LODs are supported in order to support 4 different LODs of the CityGML. For each LOD 

of a content in a tile, separate uri’s are used to point to separate b3dm files (Figure 36). 
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Figure 36. Displaying varying LODs according to the distance of the camera 
 

At first, LOD1 is rendered for a tile(Figure 36, left), if camera zooms in to the tile, 

child is rendered as LOD1 and also parent is refined as LOD2 (Figure 36, middle), if camera 

goes on to zoom in to child, new level is rendered as LOD1 and child is refined as LOD2. 

Extended tileset.json file is shown in Figure 37. 

 

 
 

       Figure 37. Generated tileset.json file for a multi LOD dataset 
 

2.3.4. Development of the RESTful Web Services 

 

Proposed solutions have been implemented through RESTful web services. Client and 

server communicate with each other through web services developed by using Java Jersey 
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rest framework. The system overview can be seen in Figure 38. Deployment of the 

application is done using Amazon Lambda Serverless.  Serverless stands for not needing 

your own servers to execute the application on a server and Amazon Lambda is serverless 

platform provided by Amazon Web Services (AWS). End users can upload 3D geospatial 

data in the CityGML format to the server. In the server, the uploaded file is stored in an 

Amazon S3 bucket. S3 stands for simple storage service and bucket is a data container for 

uploaded objects in Amazon S3. Amazon lambda functions have been used to process the 

uploaded file in S3 bucket. Using the citygml4j open-source java library CityGML file is 

parsed and using the earcut4j open source java library 3D polygons of the city objects are 

triangulated. Then, using our 3D tilers based on R-Tree and Adaptive QuadTree, the 3D 

tileset is generated in accordance with the OGC 3D Tiles standard. Then, the end user can 

download the 3D tileset to its local machine or display the generated tileset using the client 

of the application. For developing the client, Cesium.js, HTML5, WebGL and Prime Faces 

technologies have been used. Cesium.js has been used to render 3D tileset and Prime Faces 

which is an open-source java server pages library has been used to develop the user interface 

of the client. 
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Figure 38. System Overview 
 

2.3.5. Tiling of the Terrain 

 

2.3.5.1. Tile Map Service (TMS) Specification  

 

TMS is a specification for serving maps as tiles on the web that is developed by the 

Open Source Geospatial Foundation (OSGEO). TMS is also the predecessor of another 

protocol called Web Map Tiles Service which is developed and published by OGC (TMS, 

2010). It aims to provide interoperability between web map applications by standardizing, 

requesting, and accessing the tiles. 

TMS provides a layout based on quadtree for streaming vector data in our case terrain. 

A quadtree is a hierarchical tree data structure in which each internal node has exactly four 

children which are exactly equal in size. 

TMS uses the z/x/y tile naming scheme for naming quadtree tiles. Z is the zoom level, 

X is the column number and Y is the row number (Figure 39). It is worth mentioning that 
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the Y coordinates start from bottom left in TMS unlike many vector tiles such as Google 

Maps, Bing and OSM which their Y coordinates start from top left. 

 

 
 
Figure 39. TileMap Diagram according to TMS (TMS, 2010) 
 

2.3.5.2. Quantized Mesh Specification  

 

Quantized-Mesh is a specification and format for streaming massive vector terrain 

datasets for 3D visualization (URL-20). Quantized-Mesh is based on TMS global geodetic 
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profile. According to this profile coordinate system must be EPSG 4326. First 3 levels of 

tiles can be seen in Figure 40. Note that there are 2 root tiles at level 0. 

 

 
 
Figure 40. First 3 levels of tiles in the quantized-mesh specification 
 

A terrain tileset in quantized-mesh-1.0 format is a simple multi-resolution quadtree 

pyramid of heightmaps (URL-20). A JSON file that consists of metadata about this quadtree 

terrain tileset that is called “layer.json” must be in the root folder of the tileset on the server. 

Context of the file can be found in Figure 41. 

 

 
 

       Figure 41. layer.json file for our terrain dataset. 
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It is worth mentioning the important information in the layer.json file. “available” key 

contains values of for each tile zoom level, a list of tile ranges is included that defines the 

tiles that are available in this tileset. Each tile range is defined by x and y TMS coordinates 

that bound a range of tiles. In Figure 41, only the first two levels are included in order to 

minimize the figure. “bounds” is the maximum extent of available tiles. “projection” 

contains coordinate system information. If it is not defined, projection is EPSG:4326 by 

default. The other option for projection in quantized mesh specification is EPSG:3857 which 

is used by Google Maps. “scheme” is the tile naming scheme. Available values are “tms” or 

“slippymap”. The difference between these options Y coordinate numbers which was 

explained more detailed in the previous section. 

 

2.3.5.3. Generation of TIN Pyramid  

 

The developed tiling algorithm takes a regular raster DTM in geotiff format and creates 

a TIN pyramid from it. First, contour lines are generated from given raster input and points 

of the contours are extracted. In order to generate multiple level of details, data must be tiled 

according to a data structure in this case it is quadtree.  

Contours may intersect with boundaries of multiple tiles. In such a case, to ensure data 

coherence new points are created as a result of intersection of contour and tile border. These 

points are referred to as “steiner points” in the literature. After the generation of the tiles, for 

lower levels of tiles, data has been simplified in order to control the data size threshold which 

is 50kb for terrains.  

 

2.3.5.4. Simplification Process  

 

For simplification of contours Ramer Douglas Peucker (RDP) algorithm has been 

used. RDP algorithm works recursively. RDP divides a line to sub segments and removes 

some points until no point is left to remove. A line simplification using RDP is shown step 

by step from top to bottom in Figure 42.  First, start (A) and end points (B) of the lines are 

marked as kept and a straight line between A and B points is constructed. The point that has 

the maximum perpendicular distance from this line is selected (Point C in Figure 42). Then 

two line segments are constructed using this point. One segment is from A to C and the other 

one is C to B. The point that has the maximum perpendicular distance from these new lines 
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are found  (D and E points respectively in Figure 42). Then again new line segments are 

constructed using D and E points and points that have the lower distance value than a 

predefined threshold often called as epsilon in literature are removed from the lines (red 

points in Figure 42). This process repeats itself until there is no point to remove in the lines. 

 

 
 
Figure 42. Step by step RDP Line Simplification. Green points are selected as points to  
                  keep and red points are removed during the simplification process. 
 

A varying epsilon value has been used for generating varying levels of details. Big 

vector tile vendors such as Mapbox and Swiss Federal Office of Topography recommend 

that tiles should not exceed 50KB in size which is approximately equal to 4000 vertices in 

the terms of data density. To keep data size under 50KB tiles, the starting epsilon value has 

been used as 8. For a lower level, area multiplied by 4 which means data density 

approximately multiplied by 4. In order to not exceed 4000 vertices, the epsilon value is 
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multiplied by 4 for the previous level of tile. In this way, different levels of details have been 

generated using varying epsilon values which are controlled by the developed tiling 

algorithm itself. After the generation of multiple levels of details, these lines are triangulated 

by using a Delaunay triangulation algorithm and TINs are generated for each tile. 

 

2.3.5.5. Implementation of the Quantized Mesh Specification  

 

Data format for terrain tiles is basically a little endian binary blob in quantized-mesh 

specification and data files have .terrain extension.  The header section of the terrain file 

should contain the following information. 

 

· Center coordinates of the tile in the ECEF coordinate system 

· Minimum and maximum heights in the area covered by tile 

· Coordinates and radius of tile’s bounding sphere in the ECEF coordinate system 

· Coordinates of the horizon occlusion point in the ECEF coordinate system. 

 

After the header information, there is the geometric information about vertices of the 

TINs. vertex count and coordinates of the vertices are stored in this section of the terrain file. 

In order to implement the quantized mesh, these values must be calculated for each tile. 

 

2.3.5.5.1. Calculation of the Horizon Occlusion Point 

 

In the virtual globe-based engines like Cesium and Google Earth, view frustum culling 

is not enough for determining invisible objects. In the following image (Figure 43), view 

frustum is represented as thick white lines. The green points are visible because they are in 

the viewing frustum, but red points are outside of the frustum hence they need to be culled. 

But although the blue point is in the viewing frustum, it is invisible to the viewer due to the 

spherical shape of the earth itself. For culling these “blue points”, a horizon occlusion point 

(HOP) is calculated then if the object is below the HOP it is culled otherwise it is rendered. 
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Figure 43. The blue point is invisible to the viewer due to the spherical shape of the earth 

(URL-21). 
 

In the run time, Cesium implements horizon culling using pre calculated HOP values. 

The calculation of the HOP in this thesis is based on two great blog posts about horizon 

culling (URL-21 and URL-22).  
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Figure 44. Computation of Point P, the HOP (URL-22) 
 

In Figure 44, the world is represented as a blue unit sphere and terrain tile is brown 

polygon. “O” is the center of the earth and “P” is the HOP and “V” is a point in the terrain 

tile. First, all the coordinates are transformed to the ellipsoid-scaled space by multiplying 

each coordinate with the inverse of the radius of the WGS84 ellipsoid. X, Y, and Z 

components of the radius are as follows. 

 

Rx= 6378137.0 

Ry= 6378137.0 

Rz= 6356752.3142451793. 

 

After this transform , For each vertex in the tile a HOP value “P” is calculated using 

the following formula (2.6) 

 

4𝑂𝑃77777⃗ 4= 1/cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 (2.1) 
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Then the furthest P point from the ellipsoid is selected as the HOP and written to terrain 

file as double values. 

 

2.3.5.5.2. Calculation of Vertex Coordinates 

 

In order to improve performance of web applications, it is important to reduce data 

size transmitted between server and the client. Vertex Quantization is a geometry 

compression technique that compresses data size by normalizing vertex coordinates. In this 

way, vertices can be represented with less memory footprints. 

In WebGL, floats are stored as 32-bit floating-point numbers which are 4KB in size. 

Using quantization, vertex coordinates can be stored as 16-bit unsigned integers which are 

2KB in size. Quantized-Mesh specification encourages this technique and vertex coordinates 

must be quantized into the 0-32767 range. For quantization, vertex coordinates have been 

transformed to 0-32767 range using linear interpolation. Since the center of the tile is stored 

in ECEF coordinates, engines like Cesium can decompress vertex coordinates at run time. 

Figure 45 shows the Java class that has been used to store terrain data. Observe that since 

there are no unsigned types in java vertex coordinates are represented using short type 

instead of unsigned integer.  
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  Figure 45. QMesh class used for storing terrain data in quantized mesh format 
 

2.4. Findings and Discussion 

 

2.4.1. Performance Comparison of R-Tree and Adaptive QuadTree 

 

Proposed tiling methods have been tested on two different datasets: 

• Kaşüstü (1282 buildings, 10 km2, 20mb) 

• Trabzon (56602 buildings, 4685 km2, 1.05gb) 

Two data structures have been compared based on construction, addition, deletion, and 

kNN (k nearest neighbour) spatial query performances. The Performances of the operations 

are measured based on execution time of the algorithms in seconds (Table 5). 

  



68 
 

     Table 5. Performance metrics of the data strucrures 
 

 
Kaşüstü Dataset  Trabzon Dataset 

 
R-Tree Adaptive QuadTree R-Tree Adaptive QuadTree 

Construction 420.67s 86.51s 2513.80s 483.57s 

Addition 0.83s 0.05s 1.12s 0.09s 

Deletion 0.67s 0.04s 0.90s 0.09s 

KNN Query 0.61s 1.13s 2.14s 4.18s 

 
 

Since construction of the data structures requires processing each feature in datasets, 

construction times increase linearly with the data size.  However, since addition, deletion 

and kNN query operations are performed on the only relevant nodes through spatial search, 

execution times of these operations do not increase linearly with data size. Although the 

Trabzon dataset is 52 times larger than the Kaşüstü dataset in size, addition, deletion and 

kNN queries are only approximately 2 times slower than Kaşüstü dataset in Trabzon dataset. 

These results show the effectiveness of the addition, deleting and kNN query operations in 

the terms of scalability. 

When we compare R-Tree and Adaptive QuadTree, for both dataset there is a huge 

difference in construction times between R-Tree and Adaptive QuadTree. Generation of R-

Tree is approximately 6 times slower than generation of Adaptive QuadTree. Addition and 

deletion operations are faster in Adaptive QuadTree while kNN queries are faster in R-Tree. 

Depending on the results in Table 4, if the application uses a static 3D geospatial data  and 

requires kNN queries, R-Tree must be used as the tiling algorithm. If application requires 

dynamic geospatial data with heavy updates Adaptive QuadTree must be used as the tiling 

algorithm. 

 

2.4.2. Hierarchical Data Structures or Regular Data Structure 

 

In the related works, 3D geospatial data decomposed to tiles using regular data 

structures or hierarchical data structures. However, none of the works explain why regular 

data structure was used or why a hierarchical data structure was used.  
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In regular data structure, the extent of the data set is subdivided equal sized rectangular 

tiles. Hence, construction of the data structure is fast and easy to implement when it is 

compared to hierarchical data structures. The simplicity comes from that there is no check 

for tile size threshold and there is no check for integrity of the objects. After the generation 

of the tileset, all the tiles are at the same level without a hierarchy. In such a structure, 

optimizations based on the hierarchical information can not be implemented. For instance, 

each tile must be tested against frustum culling for rendering or for a kNN query, range 

calculation must be done for each tile.  Another disadvantage of the regular data structure is 

heterogeneous tile sizes. Since decomposition is done spatially without considering data 

density and distribution of the objects, there may be more objects in some tiles than the 

others. Hence, fetching and loading times of the tiles may vary and can not be controlled. 

Also, the same is true for rendering. Rendering performance can not be controlled and 

rendering times and fps may vary. 

In contrast to regular data structure, in hierarchical data structures, data set is 

subdivided into tiles based on a tile size threshold. Thus, a hierarchy and parent-child 

relationship between tiles is constructed. Hence, construction of the data structure is slower 

and more complicated than its regular counterpart. However, this disadvantage comes with 

a lot of benefits. In such a hierarchical data structure, many optimizations can be performed. 

Using hierarchical information and scene graphs, optimizations can be done for frustum 

culling on the visualization pipeline. If the bounding box of a tile is outside the view frustum, 

with that information it is also guaranteed that the childs of the tile are outside frustum as 

well, hence there is no need to perform visibility checks for the childs. An update operation 

can be performed efficiently by traversing the hierarchical tree and finding the relevant tiles 

and performing updates on them. However, for the same update operation, every tile had to 

be searched in a regular data structure. Another advantage of the hierarchical data structures 

are homogenous tile sizes. Since decomposition is done using a tile size threshold, tile sizes, 

loading times of the tiles, rendering times of the tiles and fps can be controlled. 

  

2.4.3. Examining the Differences Between the Proposed Methodology and the 
Related Works 

 



70 
 

The related work and their differences from the proposed methodology in this thesis 

have been given in related work of this chapter. Under this topic, most similar works have 

been discussed in more detail. 

Gaillard et al. (2015) and Krämer and Gutbell (2015) have used a regular data structure 

for tiling the dataset. In the methodology proposed in this thesis, hierarchical data structures, 

R-Tree and Adaptive QuadTree have been used. Hence, our work has advantages described 

in the previous topic. Gaillard et al. (2015) and Krämer and Gutbell (2015) both developed 

a rendering strategy based on the regular data structure. Tiles that contain the camera and 

their neighbour tiles are fetched and rendered. The neighbour tiles can be easily found in 

regular data structure using row and column numbers of a tile. However, this rendering 

strategy is very hard to implement with hierarchical data structures such as in our 

methodology. Because neighbour tiles are hard to find in a hierarchical dataset and a tile 

may have many neighbour tiles that are inefficient to render at once. Hence their rendering 

strategy does not work with  other data structures. In contrast, our rendering strategy is based 

on hierarchical data structures and works well with all of the other data structures such as 

kd-Trees, R-Trees, QuadTrees as long as the data structure is a hierarchical tree. 

Additionally, Gaillard et al. (2015) and Krämer and Gutbell (2015) do not implement a 3D 

standard such as 3D Tiles and interoperability of the works is limited when it is compared 

with ours. 

The most similar work to this thesis is Gaillard et al. (2020). In their work, a 

hierarchical data structure has been used and the 3D Tiles standard has been implemented. 

Instead of using a tile size threshold to create hierarchy between tiles, an interesting approach 

has been implemented. Hierarchy has been constructed using the road network. The 

buildings adjacent to main roads have been placed in higher tiles in hierarchy while the 

buildings not adjacent to main roads have been placed in lower tiles. Such a hierarchy does 

not represent data size precisely as in this thesis and heterogenous tile sizes may occur. Data 

size and rendering performance are not controllable as in our methodology. 

Cesiumion is the most mature software component to generate 3D tileset according to 

3D Tiles standard and it is the most similar product to our developed framework. As in our 

developed framework, 3D geodata can be uploaded, tiled and visualized using Cesiumion. 

The main difference from the developed framework in this thesis is that, when 3D geodata 

is updated, re-tiling must be done for the whole dataset. In our framework, a 3D tileset can 

be updated without re-generating the whole tileset with update functions such as “insert” and 
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“delete”. For the Trabzon dataset, generating a tileset is 483 second while updating it is 0.09s 

(Table 5). There is a huge difference and re-generating the tileset must be avoided as long 

as possible. None of the components of work support varying LODs as the developed 

framework.  

 

2.4.4. Layer-Based or Object-Based Tiling Scheme 

 

After the generation of the tileset, when we tested the render performance for 

displaying tiles, we see that while zooming or rotating render performance drops under 60 

fps. The reason was DTM. Rendering a textured DTM is more computationally intensive 

than rendering untextured 3D buildings. Since tile size threshold is determined using only 

3D objects without considering the terrain, rendering performance drops under 60 fps. In 

order to guarantee the 60fps rendering performance, while determining tile size threshold, 

terrain also has been considered (Figure 46) and determined as 180KB. 

 

 
 
Figure 46. Testing the rendering performance 
 

Above mentioned situation has raised the discussion; tiling should be done as object 

based or layer based. For a layer-based tiling, each layer is tiled individually. Each layer 

conforms to the tile size threshold and guarantees 60fps individually. Advantage of the layer-

based tiling is that layers can be displayed or hidden individually. The disadvantage is that 

when users display multiple layers at once, fps may drop below 60 fps.  
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In object-based tiling, multiple layers are tiled together. Bounding box of a feature is 

searched in other layers and all the relevant data that correspond to the bounding box in other 

layers are considered for tiling. The advantage is that multiple layers can be displayed 

without compromising 60 fps. The disadvantage is that tiling must be done dynamically and 

adding new layers requires a re-tiling process. 

 

2.4.5. Order of the Operation During Tiling Process 

 

Operations that affect the tile size and render performance must be performed before 

the tiling. Also, some operations are impossible to perform after tiling. 

Clamping to the terrain must be done before the tiling operation. Although a modified 

model view matrix can be used to adjust heights according to terrain, for a single b3dm file 

only a single model view matrix is applied hence, buildings of the tile cannot be adjusted 

individually, the same offset value is applied to all the buildings in the tile. Because of this 

limitation of 3D Tiles, clamping to the terrain must be performed for each building before 

the tiling operation.    

Calculation of vertex normals and triangulation operations increases the size of the 

geometric data of the features hence, to not to compromise tile size threshold, these 

operations must be done before the tiling. Calculation of the vertex normals must be done 

before the triangulation. Because after the triangulation, although surface normals do not 

change, since the number of surfaces increases, calculation of the vertex normals will be 

slower.  

 

2.4.6. High Precision Rendering of the 3D Tileset 

 

In WebGL, coordinates of the vertices are stored as 32-bit single precision floats but 

in georeferenced 3D geospatial datasets, coordinates are stored as 64-bit double precision 

values. Georeferenced coordinates are larger than seven decimal digits and exceed the limits 

of the 32-bit single precision floats. Hence, precision loss occurs in coordinates while 

mapping them to WebGL. Because of the precision loss, unwanted jittering effect occurs at 

the rendering stage which affects the quality of the rendering. 

To overcome precision loss, the center of each tile is stored in the feature table in earth 

centred earth fixed (ECEF) coordinate system as RTC values. Coordinates in the tile are 
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transformed to local coordinates which 32-bit single precision is sufficient by translating 

them using RTC values. At runtime rendering has been made using translated local 

coordinates to avoid the jittering effect. 

 

2.4.7. Review of the 3D Tiles Specification 

 

3D Tiles is designed for efficient streaming and rendering massive geospatial datasets 

and most of the concepts borrowed from Computer Graphics. Understanding and 

implementing these concepts (Figure 47), requires a steep learning curve for a person that 

has a GIS oriented background. Moreover, these concepts are not clear and not defined well 

in the standard. 

 
 
Figure 47. Concepts and Technologies Used in 3D Tiles Standard 
 

There is a “Geometric Error” definition in the standard verbally which is not clear 

enough to implement. There is no mathematical definition for it hence, calculation of the 

geometric error is not defined. To overcome this issue a formula has been developed to 

calculate geometric error which was described in methodology.  

Although 3D Tiles specification imposes hierarchical data structures, tile size 

threshold is not defined, tile size threshold is defined in this thesis based on rendering 

performance in methodology.  
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Knowledge about WebGL is required in order to implement the 3D Tiles standard. 

Error warnings about WebGL must be understood in order to solve problems. Some WebGL 

errors encountered during the development process were “GL_INVALID_OPERATION: 

Insufficient buffer size.”, and GL_INVALID_OPERATION : glDrawElements: range out 

of bounds for buffer. The first error was caused due to writing more data than exists into a 

buffer for an index array. The second error was caused due to the wrong indexing of the 

vertices while creating the index buffer. Debugging and solving these problems are not easy 

due to the verbosity of the WebGL. Error messages are not identical to problems and many 

other problems would have caused the same error messages. 

3D Tiles uses glTF as a 3D model format. glTF is the most efficient format today on 

the web but debugging and encoding it is not easy.  glTF is a binary format hence not human 

readable which makes it difficult to notice errors. Binary data is represented as Base64 

encoded text. Here is a part of our geometric data of a tile as Base64 string, 

"uri":"data:application/octet-

stream;base64,7mQfQqLZI0IAAAAA22QfQo7ZI0IAAAAAxGQfQpvZI0IAAAAAyWQf

QqDZI0IAAAAAuWQ…". Data is heterogenous, vertices, normals, indices are all in this 

string. To be able to decode and read data, it should be known which type of data is between 

which bytes in the buffer. Hence this makes it difficult to debug and decode the data when 

it is compared to formats such as GeoJSON.  

Also, glTF specification dictates 4-byte boundary in order to align data and make data 

access efficient. Hence, in order to align data in the buffer according to the 4-byte boundary, 

padding must be done in some parts of the buffer. Sizes of the structures in glTF such as 

bufferviews and accessors must be a multiple of 4 bytes. While generating the contents, 

padding is implemented to guarantee that sizes of were a multiple of 4 byte. Although sizes 

of all glTF structures were a multiple of 4 bytes, we still kept getting warning about the 4-

byte boundary on the console of the browser. The reason was that beyond glTF structures, 

each index must be a multiple of 4 bytes; however, an indice is encoded as an integer array 

that has tree integer elements. Hence, an integer is 2 bytes, an index is 6 bytes in size. 2-byte 

padding implemented for each index in the buffer hence, this solved the issue. This situation 

is not described in glTF specification clearly and wasted more time than it is worth.  
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2.4.8. Evaluation of the Terrain Tiling and Quantized Mesh Specification 

 

One of the problems encountered during tiling of the terrain was data coherence. Some 

triangles intersect with the boundary of two or more different tiles (Figure 48).  

 

 
 
Figure 48. Intersection of triangles (Yellow) with tile borders (Green) 
 

This intersection splits triangles and creates additional points (pink points in the figure 

38). The split of triangles changes the topology of the TIN and creates new polygons. These 

polygons require an additional triangulation process. If these polygons are not handled 

properly “cracks” that look like “shark teeth” occur on the tile edges (Figure 49).   
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Figure 49. Cracks on the left and bottom edges of the tile. 
 

Additional triangulation of these polygons at the tile borders is a computationally 

expensive process. In order to find intersecting triangles with the tile borders, each triangle 

must be tested with tile borders. Hence, finding intersecting triangles is a O(n) process in the 

term of time complexity. 

In order to avoid this computationally expensive additional triangulation process, 

original data has been tiled before triangulation using contours. Then TINs have been 

generated by triangulating points of these contours. 

While implementing Quantized Mesh specification most of the encountered errors 

were due to the encoding of the terrain file format not due to the calculations. Because as in 

the 3D Tiles specification, formats are easy to parse, easy to render but hard to encode and 

hard to debug.  

 

2.5. Conclusion 

 

In this chapter, the tiling component of the web framework has been developed by 

implementing the 3D Tiles standard and Quantized Mesh standard. 3D Tiles have been 

implemented and tested using R-Tree and Adaptive QuadTree data structures for 3D 

geospatial data. The Quantized Mesh standard has been implemented and tested using 

QuadTree data structure. End-users can upload, tile, and display their 3D geospatial data and 

2.5D terrain using the developed framework through a browser without any software 
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component installation. Supported formats for 3D geospatial data are OBJ, glTF, CityGML, 

glb, b3dm and CityJSON and supported format for terrain is Geotiff.  

Performance of the hierarchical data structures are compared with each other using 

two different datasets which vary in size. R-Tree performs better in spatial queries while 

Adaptive QuadTree performs better in updates and construction.  

3D Tiles standard has been extended to support multi-LOD data and multi 

representation of 3D data has been achieved and one of the limitations of 3D Tiles has been 

eliminated.  

One of the limitations of the tiling component is textures. Textures of 3D models are 

not supported and not considered in the tiling algorithm. In one of the future works texture 

support will be developed. 

3D Tiles is designed for client-based rendering. In one of the future works, it will be 

extended to support server-based rendering. 

Another important future work would be multithread support. Using multi-threaded 

programming, tiling processes can parallelize across the multiple cores of the modern 

computers and performance would be increased. 

 

 



3. CHAPTER 3 WEB-BASED 3D ANALYSIS AND QUERY OF 3D 

GEOSPATIAL DATA 

 

3.1. Introduction 

 

With the development and increasing popularity of the concepts and technologies such 

as smart cities and digital twins, beyond visualization, the need to perform web-based 3D 

analysis and simulations on 3D geospatial data has arisen. The true power of GIS is to 

analyze geometric and topological properties of features and extract new information from 

them.  

3D analysis and query capabilities of existing works are quite limited. In most of the 

works named as “web-based 3D analysis”, analyses are performed on the desktop as offline, 

and results of the analyses integrated to a web application. In such an application only, the 

results are visualized and can be queried as online. The major drawback of this type of 

application is that the user has to work in multiple environments and with multiple software 

components. For an analysis, when a value of a parameter changes, the user has to re-perform 

analysis on desktop and pack and send the results to the client for visualization and query. 

Additionally, two different software cannot interact with each other automatically. Hence, 

most of the time a user intervention is required to complete the remaining steps for the web-

based visualization of the analyzed results. This type of applications cannot be called as true 

2D WebGIS applications where all the interactions of the user can be performed on a single 

web-based environment and software.  

In this chapter, 3D analysis and query components of the framework have been 

developed. Thanks to the developed components, users can perform 3D analysis and queries 

on 3D geospatial data on a single web-based software and can visualize results. In order to 

analyze 3D geospatial data efficiently on the web, a new fast 3D intersection algorithm has 

been developed. To be able to visualize results of the analyses, analysis components have 

been integrated with the tiling component which was described in the previous chapter. 
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3.2. Related Work 

 

Many existing works entitled as 3D WebGIS were about the visualization of the 3D 

analysis on a client application, rather than performing 3D analysis itself online. Common 

point of aforementioned works in this paragraph is that although they are named as 3D 

WebGIS they do not perform 3D spatial analysis online. Achere et al. (2016) visualized 

results of a flood analysis as 3D. In another work entitled as 3D WebGIS Feng et al. (2011) 

visualized terrains in 3D. Similarly, Chen et al. (2016) developed a framework for 2D and 

3D visualization of geospatial data to manage landslide hazards. Xiaoqing et al (2010) 

visualized results of a shortest path analysis in 3D by integrating ArcGIS and Skyline 

software. Li et al. (2015) visualized earthquakes on a globe as 3D. Schwerin et al. (2013) 

developed a VR application in which you can interact with 3D models. With this tool, users 

can search and query, in real time via a virtual reality (VR) environment, segmented 3D 

models of multiple resolutions that are linked to attribute data stored in a spatial database 

but cannot perform 3D spatial analysis. Pispidikis et al. (2016) developed a web-based tool 

to query and visualize CityGML data. Although they mentioned 3D spatial analysis in their 

article, which spatial analysis can be performed are not explained and also, results of the 

work do not show 3D spatial analysis. They mostly focused on querying the CityGML data 

and visualizing queried results.  

The most similar works to our proposed methodology are Chaturvedi (2014) and Auer 

and Zipf (2018). Chaturvedi developed a web-based tool to perform 3D buffer and 3D 

intersect analyses. The drawbacks of this work are that analyses are performed on the client 

using not on the server. Hence, when the analyzed 3D geospatial data exceeds the memory 

of the browser, the application does not work. Application is highly dependent on the size 

of the input data.  Another limitation is that, in 3D intersection analysis, the application 

cannot calculate intersection points for partially intersected objects. As can be seen from the 

images of the results, partially intersected buildings are considered to be completely inside 

the intersected object, in that case the sphere. In their work Auer and Zipf (2018) developed 

a 3D WebGIS application that performs 3D line of sight analysis on the browser. The 

limitation is that analysis performed on the client as in Chaturvedi, hence application is 

highly dependent on the size of the input data.  
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3.3. Methodology 
 

3.3.1. Storage of the 3D Geospatial Data 

 

File systems offer rapid access to data which is helpful for fast reading and extracting 

of the necessary information from data when it is compared to databases. On the other hand, 

storing data in databases is a more convenient way for analysis and query operations. A 

hybrid solution which benefits from both approaches is adopted in this thesis and in the 

developed framework. After the tiling 3D geospatial dataset 3D tileset is stored directly in 

the file system on the server with a metadata file (tileset.json) referencing file locations. Such 

an approach which was used and described in the previous chapter is beneficial for 

visualizing purposes. For analysis and query operations 3D tileset is stored in a database.  

In relational databases, data is stored in the tables according to a schema. Mostly to 

avoid data redundancy, different classes of the data model are stored in different tables in 

the database. To query a feature, multiple numbers of tables join together. Join operations 

are the main bottleneck of the relational databases. Update operations require updating many 

records in many tables.  

Unlike relational databases, in NoSQL databases, data is not stored in rigid table 

structures. Data may be stored in columns, as key-value pairs, in graphs or in documents 

according to the type of the NoSQL database. The data to be stored in the database may have 

very different shapes and sizes and designing the schema in advance may be a real pain. In 

NoSQL databases, it is possible to store polymorphic data in a single document. Hence this 

schema-less approach gives developers greater flexibility while developing applications.  

In this thesis open-source mongoDB which is a document-based NoSQL database is 

used. A flat schema has been designed to store hierarchical tiles in the database. Our 

application database consists of two collections. One collection is for the tile contents and 

scene graph data and the other collection stores non-spatial attributes of the features of the 

tiles.  

To store a tree-like hierarchical data structure in mongoDB in our case 3D tiles, one 

way is organizing documents by storing references to "child" nodes in "parent" nodes. There 

are four more different ways to store hierarchical data in mongoDB which can be found in 

the URL-23. Since each operation in our API starts with traversing the 3D Tileset from top 

to down and finding relevant nodes, tiles are stored within a single collection as each tile is 
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a single document in this collection with references to child tiles. 3D tiles are stored in the 

“tiles” collection (Figure 50) and feature attributes are stored in the “attributes” collection 

(Figure 51). 

 

 
 
Figure 50. An example of a single document in the “tiles” collection. 
 

“tile_id” is the id of the tile and “child_id” is the “tile_id” of the child tile. “bbox” is 

the coordinate array of the bounding volume of the tile in the order of Xmin, Xmax, Ymin, 

Ymax, Zmin, Zmax. “positions” are the array of vertex coordinate triplets in the local 

coordinate system. “indices” are the triangle surfaces those values refers to vertices in the 

positions array.  “normals” are the vertex normals and “batch_id” values are the ids for each 

feature in the tile. “BATCH_LENGHT” is the individual feature number in the tile and 

“RTC_CENTER” values are the coordinates of the center of the tile in the ECEF coordinate 

system. Note that some values are truncated to adjust the size of the figure. 
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          Figure 51. An example of two documents in the “attributes” 
collection 

 

In the “attributes” collection, “tile_id” is the id of the tile which can be used to make 

queries faster while querying features of a specific tile. “batch_id” is the id of the feature in 

the tile and “property” is an object that can have any number of non-spatial attributes. In our 

example features have two attributes: “building_height” and “number_of_storeys”.  

 

3.3.2. The 3D Intersection Algorithm 

 

3.3.2.1. Detection of the Collison 

 

The 3D intersection algorithm consists of two parts. First part is to detect whether there 

is an intersection between two 3D objects and the second part is to construct the intersected 

section as a 3D polygonal mesh. 

The algorithm starts with figuring out whether two input 3D polygonal mesh models 

intersect or not and return a boolean value as a result. To determine the collision between 

objects a plane is swept through objects. Vertices of the objects are stored in an array and as 

they intersect the surface while the plane is being swept, they are removed from the array. If 

the surface intersects with the vertices of the second object before vertices of the first object 

completely removed, there is an intersection, and this part of the algorithm returns “true” 

Boolean value. Otherwise, objects do not intersect with each other. 
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       Figure 52. Sweep Plane and collision detection 
 

3.3.2.2. Construction of the Intersected 3D Polygonal Mesh Model 

 

To construct the intersected 3D mesh properly, additional topological information such 

as adjacency of the vertices and adjacency of the surfaces is needed. For this purpose, a 

topological polygonal mesh data structure called “Half-Edge” data structure is implemented.  

Half-Edge (HE) is a combinatorial data structure, and it suits well for our intersection 

algorithm as long as the 3D data is manifold which means each edge is incident to at most 

two faces. In HE, edges vertically divided to two directed half edges (Figure 43). A simpler 

data structure for storing 3D data which traversing is faster than HE such as Circular Doubly 

Linked List (CDLL) is not suited well. The problem is that a vertex may have more than two 

adjacency vertices but CDLL points to only one next and one previous element. A data 

structure that points to more than one element is needed and this is where HE comes to usage. 

In HE; 

• Each vertex has a reference to its half edge where the half edge starts at this 

vertex.  

• Each face has a reference to one of the half edges that bounds it. 

• Each half edge has a reference to its start vertex, to a face that it belongs to, to 

its twin half edge and its previous and next half edges. 
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Using this information, a face can be traversed with its vertices, half edges, and 

adjacent faces. An example of a HE records given in Table 6. 

 

 
 

         Figure 53. Half-Edge data structure 
 

 

Table 6. Example of Half-Edge Data Structure 

Edge Start Opposite Face Next Edge Prev. Edge 

e1,2 V1 e2,1 f1 e1,4 e3,1 

e3,1 V3 e1,3 f1 e1,2 e4,3 
 
 
Figure 54 Shows two objects to calculate intersection between them. Please note that 

objects do not intersect each other yet. To calculate intersection, first, Object B was 

translated, and intersection occurred in Figure 55. 
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Figure 54. Two objects are about to intersect. 
 

 
 
Figure 55. Intersection is calculated and rendered as a red polygonal mesh. 
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To calculate intersection, first, the one of the original vertices of Object A which is 

completely inside Object B is found. In the example in Figure 45, it is V1. Then the algorithm 

finds neighbor vertices from HE data structure. Using V1 and its neighbors V2 and V3, the 

algorithm sends rays along the directions of V1-V2 and V1-V3. Then using ray-surface 

intersection tests, the points where the rays intersect with the surfaces of the Object B is 

calculated. Using HE structure, new points which occur as a result of intersection are indexed 

in the right order and stored as a new HE structure. 

Using the 3D intersection algorithm many types of 3D overlay analyze also referred 

to as Boolean operations in Computer Graphics and Computational Geometry can be 

calculated. Implemented types are 3D intersect, 3D difference, and 3D clip. In 3D Clip, 

outside of the intersected part of the first input with the second input extracted from the first 

input, only the intersected part remains in the first input. In 3D Difference, the intersected 

part is extracted from the first input. 

To test our 3D intersection algorithm with real world datasets, by utilizing 3D 

Difference, LOD1 block models of Kaşüstü dataset and Trabzon datasets used in Chapter 2, 

extracted from LOD2 models of the same datasets and thus, roof geometries are derived for 

Kaşüstü and for Trabzon.  

 

3.3.3. Integration of the 3D Intersection Algorithm with Tiling and 3D Tiles 

 

In the previous topic, the 3D intersection algorithm is explained using two 3D objects. 

However, it is designed to calculate intersection between two different 3D tileset which 

consists of many 3D objects. Note that, in the previous section 3D objects have been 

tessellated to many small triangles to represent data density of a 3DCM on a single object 

which is easier to debug degeneres caused by the algorithm.  

Having to work via mıltiple data chunks in web environments is used to our advantage 

in order to accelerate the 3D intersection algorithm and integrate it with tiling structure. To 

integrate the 3D intersection algorithm with the tiling structure, first input 3D geospatial data 

is tiled and the tileset stored in mongoDB. Then, the second 3D geospatial dataset is tiled 

and stored in mongoDB. Then, tiling structure is used as an index structure for the 3D 

intersection algorithm. Thus, for each tile in the first 3D tileset, by using bounding boxes of 

the tiles, only relevant features derived from the second 3D tileset and intersection 

calculations are made tile by tile.  The result is a different 3D tileset as long as the tile size 
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threshold is exceeded.  As the intersections are calculated, a new tileset is constructed by 

importing intersected objects to a null R-Tree or Adaptive QuadTree structure. If the density 

of the results do not exceed the tile size threshold, the result is constructed as a single tile 

not a tileset. 

 

3.3.4. Other Types of 3D Analyses Implemented in the Framework 

 

Additionally, to 3D Clip, 3D Intersection and 3D Difference, 3D Buffer is also 

implemented. As a result of the 3D Buffer analysis, a point is converted to a 3D sphere and 

a polyline is converted to a cylindrical polygonal mesh  (Figure 56). Buffer distance can be 

given by the user in meters. Another important parameter is “quad_segs” which is the 

number of the segments used to approximate a quarter circle. The default quad_segs value 

is 8.  The lower values can be used to create more simplified versions of the spheres and 

cylinders which makes calculation faster or higher values can be used to construct more 

precise 3D shapes. 

 

 
 
       Figure 56. A sphere and a cylinder constructed as a result of 3D Buffer analysis 
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3.4. Findings and Discussion 

 

3.4.1. Performance of the 3D Intersection Algorithm 

 

3D Difference analysis is used to test the 3D intersection algorithm using both Kaşüstü 

dataset and Trabzon dataset. In the test for both datasets, LOD1 models are extracted from 

LOD2 models and thus, 3D models of the roofs are derived. The results of the performance 

tests can be found in Table 7. 

 

Table 7. Performance of the 3D Difference Based on 3D Intersection Algorithm. 
 

Dataset Number of the Vertices Execution Time (ms) 

Kaşüstü 303275 16.78 

Trabzon 1334020 29.63 

 
 
Note that execution time for construction of the tilesets for input datasets is excluded. 

Also, rendering time of the result tileset is excluded. Only calculation of the intersections 

and construction of the 3D polygonal meshes are considered. Without the use of the 

hierarchical data structures, calculation of intersection is an O (n2) process and n is the 

number of the vertices. But using the hierarchical data structures as an indexing structure, 

although the number of the vertices increased approximately 5 times in the Trabzon dataset, 

execution time is only approximately 2 times slower and shows the scalability of the 3D 

intersection calculation with hierarchical data structures.  

 

3.4.2. Limitations 

 

One of the limitations of the algorithm is that it cannot handle non manifold 3D shapes. 

Because in the HE data structure only left and right faces of an edge can be represented but 

in non-manifold shapes an edge is incident to more than two faces (Figure 57). Hence the 

proposed algorithm cannot calculate 3D touches.  
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Figure 57. Non manifold shape. Red edge is incident to four faces 
 

Another limitation is a special case that is encountered during testing and debugging 

the algorithm. If one of the vertices of an object is not completely inside the other object 

(Figure 58) the proposed algorithm cannot construct the intersection as a 3D polygonal mesh. 

Because the construction process begins with one of the vertices of an object that is 

completely inside the other object. Of course, this can be handled by increasing the ray-

surface intersections, but this occurs very rarely in real world data and increasing the number 

of the ray-surface intersection tests decrease the performance of the algorithm hence not 

implemented. 

 

 
 

Figure 58. A special case none of the vertices of the objects are 
inside the other object 
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Calculation of the points where ray intersects with the surface requires high coordinate 

precision, hence, in a floating-point environment this situation has caused some 

degenerations that the 3D intersection algorithm must handle. While calculating 

intersections between rays and planes and determining new positions of vertices, a tolerance 

value must be predefined and vertices with small distances than this value to the plane must 

be accepted as intersected. In our implementation this tolerance value is 0.05 in meters. 
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3.5. Conclusion 

 

In this chapter, 3D analyses, and query components of the framework have been 

designed and developed. To query and analyze the 3D geospatial data, data is stored in a 

NoSQL database called mongoDB. A new 3D intersection algorithm has been developed for 

3D polygonal meshes. Using the 3D intersection algorithm under the hood, 3D Clip and 3D 

Difference analyzes also implemented. In addition to 3D intersection, 3D Buffer analysis 

has been implemented. The proposed algorithm tested with both synthetic and real-world 

data. Synthetic data is used for detecting special cases and degeneres, while real world data 

is used to test real world scenarios. Some limitations have been determined and reasons for 

them are explained. For the first time with the developed components, many decision making 

processes can be analyzed in 3D in a web environment using only a browser without any 

software installation.  

One of the future works is to support more 3D analysis capabilities and also support 

more 3D representations such as Voxels. Also, to overcome limitations of the algorithm, a 

more complex data structure than HE will be implemented. 

Additionally, many real-world scenarios will be analyzed using the developed 

framework such as detecting buildings outside the zonal plan in 3D. 



4. CHAPTER 4 WEB-BASED PROCEDURAL MODELLING OF 3D 

MODELS 

 

4.1. Introduction 

 

With the rapid development in data acquisition methods and computer graphics, 3D 

City Models (3DCM) are widely used, mostly in the city planning industry. A literature 

review about 3DCMs and their applications can be found at (Biljecki et al., 2015). With the 

spread of open data policies, which is based on institutions to make their data publicly 

available (Donker and Leonen 2016), many institutions in Europe and the United States 

share 3DCMs as open data via web using web technologies HTML5 and WebGL. 

Rotterdam, Amsterdam, Delft, Berlin and New York are notable ones. 

Most of the 3DCMs are found as LoD1 block models in practice, since LoD2 models 

are much more difficult to obtain because of the need for time consuming process and 

expensive data acquisition techniques (Biljecki and Dehbi, 2019). The minimum required 

level of detail in 3DCMs varies according to use cases (Biljecki et al, 2018). While LoD1 

models are sufficient for some use cases such as shadow analysis, some use cases require 

general roof geometries such as solar analysis (Biljecki et al 2019 and Weiler et al 2019). 

In this work, the possibility of constructing 3D models using 2D data such as building 

footprints and an aerial image has been investigated. It is very difficult to model building 

roofs from 2D building footprints without roof type information. To overcome this issue, 

deep learning techniques (DL) have been used to derive roof types from aerial imagery. 

There are four contributions in this work. First, a methodology to obtain roof type 

automatically from aerial images without any user input has been developed. Then roof 

geometries have been constructed using procedural modelling and only 2D data. The Straight 

Skeleton algorithm has been extended to be able to model roof surfaces. And finally the 

proposed methodology has been implemented as a web-based solution using web services. 

DL, is a machine learning technique that a computer model learns to perform 

classification tasks directly from images, text, or sound. DL models can achieve state-of-the-

art accuracy, sometimes exceeding human-level performance. Models are trained by using a 

large set of labelled data and neural network architectures that contain many layers (URL-



93 
 

23). Thus, a DL model called CNN has been used to classify 3 main roof types with an aerial 

image in this work. After the classification, extracted roof type information has been used to 

construct roof geometries. The 3 main roof types are Hipped, Gable and Flat. 

Procedural modelling (PM) can be used to generate 3DCMs as LoD2 (Tsiliakou et al., 

2014; Martinovic, 2015). PM is an umbrella term which includes many modelling techniques 

such as L-Systems, fractals and shape grammars. All of these techniques aim to create 

multiple instance models via utilizing a set of predefined rules and algorithms. Batch 

modelling approach of PM minimizes user interaction and labour. To be able to construct 

roof geometries, PM technique has been used with roof type information that is derived via 

DL. 

LoD1 block models have been generated via extrusion (Ledoux, H. and Meijers, M., 

2011; Ohori, K., A., et al., 2015). Roof geometries have been constructed using Straight 

Skeleton Algorithm (Aichholzer et al., 1995) and Sweep Line Algorithm (Souvaine., 2005). 

Then roof geometries added to the top of block models. To be able to implement proposed 

methodology as a web-based solution, RESTful web services have been developed with web 

technologies and finally, constructed roof geometries and generated 3DCM have been 

visualized in browser via HTML5 and WebGL. 

 

4.2. Background and Related Work 

 

One of the widely used methods to generate 3DCM is extrusion from 2D footprints 

(Ledoux, H. and Meijers, M. 2011), (Arroyo, O., K.  et al 2015). But 3DCMs generated by 

this method lack roof geometries. The lack of roof geometries hinders the widespread use of 

3DCMs. While some 3D spatial analysis can be performed using LoD1 data such as shadow 

analysis, some analysis such as solar potential requires minimum LoD2 data (Biljecki et al 

2019 and Weiler et al 2019).  

Another popular method to generate 3DCM as LoD2 is using LIDAR point cloud data 

(Tomljenovic, I. et al 2015), (Bauchert J., P. and Lafarge F., 2019).  Roof shape and building 

shell is the most valuable geometric information that can be extracted from point cloud data. 

However, this process requires additional data such as 2D building footprints and 

computationally intensive data process workflows to be able to classify and construct city 

objects. 
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Procedural modelling (PM) can be used to generate 3DCMs as LoD2 (Tsiliakou, E. et 

al 2014), (Martinovic, A., 2015). PM is an umbrella term which includes many modelling 

techniques such as L-Systems, fractals and shape grammars. All of these techniques aim to 

create multiple instance models via utilizing a set of predefined rules and algorithms. Batch 

modelling approach of PM which minimizes user interaction and labour, fits very well into 

GIS applications which deal with management of big data. To be able to generate 3DCMs 

as LoD2, PM technique requires roof type information. 

To obtain roof type information some respectively new studies have been done based 

on Deep Learning. In practical terms, deep learning is a subfield of machine learning and 

functions in the same way but it has different capabilities. Unlike other machine learning 

(ML) techniques, deep learning models can learn the discrimination between classes in given 

dataset without feature extraction. But while doing this, deep learning techniques need more 

amounts of training data than ML techniques such as Support Vector Machine (SVM), 

Decision Trees, PCA. Deep learning techniques or more specifically CNNs are widely used 

for visual cognitive tasks as classification to derive discriminant functions between classes 

from images. Castagno and Atkins (2018) use CNNs to classify roof types for multicopter 

emergency landing site selection. First, they use polygon of building roof outline for 

cropping data from a LIDAR based DSM image.  Then they use the polygon for cropping 

from the RGB image in the same way. After the preparation of data, they fuse RGB and 

LIDAR images as input to CNN. Patrovi et al. (2019)  choose a deep learning  based 

approach. They use LIDAR based DSM and pansharpened VHR (Very High Resolution) 

satellite images but their approach has drawbacks with non-rectilinear roof shapes. Axelson 

et al. (2018) uses CNNs with photogrammetric point clouds obtained from aerial images for 

classifying roof types. But they consider the roofs as only two classes: ridge and flat roofs.  

Biljecki and Dehbi (2019) has obtained roof types from LoD1 models with machine learning 

without using point clouds but they have not yet constructed roof geometries using this 

information. Also, they used the LoD1 city model, not 2D building footprints. 
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4.3. Methodology 

 

4.3.1. Obtaining Roof Type Information 

 

A Python script has been written to generate train images from aerial images. These 

images are served as open data and can be found on (Bradbury et al 2016). Geopandas library 

has been used to extract geometry and attributes from 2D footprints. With this script, 

multiple buildings have been cropped from an aerial image and saved as separate image files 

using building envelopes that are extracted from 2D building footprints. Using Microsoft 

Custom Vision Service (URL-24) that eases training process, train images are labeled as 

“Hipped”, “Gable”, “Flat” and “Negative” to train data. The “Negative” label is used when 

the image cannot be identified as hipped, gable or flat. A general workflow for the training 

process is shown in Figure 59. 
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    Figure 59. Training and Prediction Processes. 
 

After the training process, the model has reached %89,9 accuracy for predicting roof 

type. The trained model exported from Custom Vision as a TensorFlow graph file to be used 

in a prediction process. A trained model can be saved as a model file and can be used in a 

different environment or application for prediction process. This is often called “transfer of 

learning” in literature. To be able to predict roof types a Python script has been coded. The 

model file has been parsed using TensorFlow (URL-25) and roof types have been predicted 

via this script automatically. A shapefile which consists of 2D building footprints has been 

enriched with roof types as an attribute. All the workflow for prediction of roof type can be 

found on a publicly available Github repository (URL-26) that includes train data, test data 

and scripts. 
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4.3.2. Extrusion and Block Model Generation 

 

A 3D model of the city can be obtained via extrusion of the building footprints. For 

this purpose, normal vectors of the building footprints are calculated. Normal vector is a unit 

vector perpendicular to the surface (Figure 50). Extracting P1 from P2 and P2 from P3 

vectors V1 and V2 are obtained. Using the cross product of these vectors, surface normal is 

calculated. 

 

 
 

  Figure 60. Calculation of the surface normal 

 
After the calculation of surface normals, using the “height” attribute of the building 

footprints, building footprints are translated along surface normals and top surfaces are 

constructed. By indexing the top and footprint points, vertical surfaces are constructed and 

LOD1 block model is derived. (Figure 61). 

 

 
 

Figure 61. 2D building footprints (left) 3D block model (right). 
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There are condominium unit plans (CUP) drawn by geomatic engineers that have 

boundaries of condominiums as 2D (Figure 62). 

 

 
 
  Figure 62. Condominium unit plan (Çağdaş, 2012). 
 

If CUPs are provided, our modeler can model condominium units as well at city scale. 

For this purpose each condominium is translated along the surface normal according to the 

height of the condominium in CUP. Then translated polygons are extruded and 

condominiums are modelled procedurally (Figure 63). 
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Figure 63. Polygons (left) multiplied and translated (middle) condominium unit in 3D. 
 

Geometries of the condominium units are stored as CityJSON. Since condominium 

units are not defined in the CityGML data model, an ADE is developed for storing 

condominium units Figure 64. 
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Figure 64. 3D condominiums stored in the CityJSON file. 
 

4.3.3. Construction of the Roof Geometries 

 

In order to model roof geometries, a straight skeleton algorithm has been used. The 

definition of straight skeleton (SS) is also its construction.  SS is a geometric construct that 

consists of only straight edges, as a result of the shrinking process of a polygon (Figure 65).  
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Figure 65. Input polygon (green), wave fronts (purple lines) and SS (red lines). 
 

In this shrinking process, each edge of the polygon moves inwards of the polygon in a 

self-parallel manner. Two events change the topology of the input polygon. Edge Event 

occurs when an edge shrinks to zero and creates a node in skeleton Figure 66  and Split Event 

occurs when a reflex vertex touches to a non-consecutive edge and creates a node in skeleton 

Figure 67. 
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Figure 66. Edge Event (Yellow edge shrinks to zero at the orange point) 
 

 
 
Figure 67. Split Event ( yellow edge meets red reflex vertex and this creates blue polygon). 
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To stimulate this shrinking process, there are two approaches. The 2D construction 

method is based on angular bisectors (Felkel and Obdrzalek, 1998) and the 3D construction 

method is based on sweep planes firstly introduced by (Eppstein and Erickson 1999) and 

used by (Kelly 2015). 

In the bisector-based approach, in order to create roof geometries in 3D, the skeleton 

must be traversed and Z values of nodes that are created by the skeleton must be manipulated 

according to proper roof height. Since sweep plane approach does not require this additional 

step, sweep plane approach has been used in this work. 

In sweep plane approach, all nodes of the skeleton are detected by intersection of 

planes. Edge events have been detected by collision of three consecutive direction planes 

with sweep plane and split events have been detected by collision of two consecutive and 

one non-consecutive direction planes with sweep plane. 

In the proposed algorithm which takes polygons as input, vertices of polygons stored 

in circular doubly linked list, every vertice therefore, has pointers to next and previous 

vertices and also next and previous direction planes. Sweep plane, which is a plane parallel 

to the input polygon, moves in the direction of the Z axis and the polygon shrinks. Edge 

events and split events are stored in a priority queue according to the height of sweep plane 

which gives the order of nodes in SS. When every edge of the input polygon shrinks to zero 

algorithm finishes and SS completed. 

The result of SS is a directed graph. In order to generate roofs, roof surfaces must be 

generated from this graph. To accomplish this, a 3D sweep line algorithm has been 

implemented. In this algorithm, first, nodes of SS is grouped according to original edges of 

input polygon (Orange points in Figure 5 for green edge). Observe that, a node is can be 

related more than one group. For instance in Figure. 5, node 2 in both in the group of edges 

E1 and E2. Then, for every group, a sweep line that is perpendicular to the related edge, 

moves from start to the end of the edge. Intersection order of nodes with this sweep line, 

determines the order of the points for the roof polygon  (Figure 68). 
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Figure 68. Sweep Line Process. 
 

SS and sweep line have been implemented via web services as a web-based solution 

using RESTful architecture. For each roof type there are two web services. One service is 

for convex polygons and the other is for non-convex polygons. Web application consists of 

3 sub modules: storage module, process module and web server module. General system 

architecture has been given below (Figure 69). Application has been deployed on an Amazon 

S3 Bucket cloud storage environment. 2D building footprints can be upload to a MongoDB 

instance on the bucket via a rest service that has been developed using Java Jersey web 

framework. 
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Figure 69. General System Architecture. 
 

4.3.4. Visualization of the 3DCM via Browser 

 

3DCMs are huge in size, to be able to visualize them via browsers, tiling approaches 

has been used with web technologies such as HTML5 and WebGL. 3D roof geometries are 

added to 3D models of the tiles thus, generated roofs are integrated to the tiling system that 

was described in Chapter 2. Thus, only needed tiles based on user’s current view in the scene 

are fetched from server.  



106 
 

Since WebGL supports only triangles as primitives for representation of surfaces, 3D 

polygons must be triangulated. An “Ear Clipping” algorithm has been used for  this purpose 

and 3D polygon surfaces that belongs to roof geometries have been triangulated. 

After generation of tileset, in order to visualize tileset in browser open source 

javascript library Cesium.js has been used in this study. Since Cesium.js is built on WebGL, 

3DCM has been rendered using client’s GPU and without any additional plug-in (Figure 70). 

 

 
 

  Figure 70. Red roofs: Flats, Green roofs: Hippeds, Purple roofs: 
Gables. 

 

4.4. Findings and Discussion 

 

4.4.1. Performance Metrics of the Roof Type Prediction 

 

3423 roof type images that belong to hip, gable and flat roofs have been used as 

training data. Flat 751, gable 1762, hip 835 The accuracy for predicting roof types is 0.89,9. 

Performance metrics are represented as AP, Recall and Precision (Figure 71). The overall 

average precision (AP) value as 0.89 is highly acceptable and proves the training is enough 

for prediction. 

 

 
 

    Figure 71. Performance metrics of training process. 
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The accuracy is higher than (Biljecki and Dehbi 2019). The main reason for this result 

is that in this work only 3 roof types has been classified. In (Biljecki and Dehbi 2019) 6 

different roof types has been classified. Also, to obtain roof types, aerial image has been 

used in this work but LoD1 3DCM in theirs. The lack of aerial imagery reduces the overall 

performance especially between similar types such as hipped and gable.The accuracy of 

predicting for individual roof types has been given as confusion matrix (Table 8). 

 

              Table 8. Confusion matrix of prediction process 
 

  Flat Gable Hipped Negative 

Flat 53 5 4 0 

Gable 8 96 10 0 

Hipped 1 14 143 0 

Negat. 1 10 2 14 

Total 63 125 159 14 

 

 

And comparison of predicted results with ground truth values (Table 9). Precisions of 

classes are not directly proportional with counts of images that used to train the model. 

Because, quality of the images also effects the results, not only count of the images. 
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Table 9. Performance metrics of prediction process 
 

Class Ground Truth Prediction Accuracy Precision Recall 

Flat 63 62 94,74% 0,85 0,84 

Gable 125 114 86,98% 0,84 0,77 

Hipped 159 158 91,41% 0,91 0,9 

Negativ. 14 27 96,40% 0,52 1 

 
 

4.4.2. Special Cases and Floating-Point Issues 

 

Implementing SS which requires high coordinate precision in a floating point 

environment has been caused some degenerations that construction algorithm must be 

handle. While calculating intersections between planes and determining new positions of 

vertices, some vertices that must have exact same coordinates can have different coordinates 

with minimal difference due to the floating point arithmetic. To be able to handle this 

situation, a tolerance value must be predefined and vertices with small coordinate differences 

with this value must be union into one vertex. If these situations are not handled, these small 

differences can lead to big changes in roof geometries  (Figure 72). 
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Figure 72. Degeneration. Two Edge Events must meet on the same point (left) but not 

properly they do not meet (right).  

 

4.5. Conclusion 

 

In this work, roof type information has been obtained from aerial image with deep 

learning and using this information, roof geometries have been constructed procedurally 

without any human intervention. A general workflow has been proposed to generate LOD2 

3D models from 2D datasets. 

This work indicates that web-based generation of useful 3D models as LOD2 from 2D 

datasets which are already derived by local governments can be a beneficial solution. All 

pipeline and process can be done using only web-based technologies, open-source software 

components. 

In this proposed pipeline for automatic modelling of roof geometries, in the time of 

writing paper, limited to 3 class as hip, gable and flat. Hence, there is an on-going work on 

this topic and this work will be extended to include modeling other roof types as well such 

as pyramid, shed etc. Also, it is aimed to detect and model chimneys on the roofs as well. 
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