
KARADENİZ TECHNICAL UNIVERSITY
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

TRABZON

KARADENİZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

The Date of Submission
The Date of Examination

/ /
/ /

Trabzon

:

By
The Graduate School of Natural and Applied Sciences at

Karadeniz Technical University

:
:

Thesis Supervisor

This thesis is accepted to give the degree of

 III

ACKNOWLEDGEMENTS

This thesis has been supported by The Scientific and Technological Research Council of

TURKEY 1001 Project with the number 118Y452 and entitled as “Developing a Web

Framework for 3D City Model Analyses.

First, I would like to thank my supervisor Prof. Dr. Çetin CÖMERT for his endless support

during my PhD. It was a privilege to experience his guidance, suggestions, scientific

enthusiasm, and I will always be honored to be his student.

I would like to express my gratitude to Mapisso software company and expecially M.

Emre YILDIRIM who is the founder of Mapisso. Translation of the developed algorithms to

the web services was jointly developed with M. Emre YILDIRIM from Mapisso.

Of course, my special thanks go to my fellows and colleagues Res. Asst. Fatih KADI, Asst.

Prof. Dr. Berkant KONAKOĞLU, Asst. Prof. Dr. Volkan YILMAZ, Res. Asst Zeynep

AKBULUT and Res. Asst. Alper Tunga AKIN for making the working environment fun.

Lastly, I owe many thanks to Muhammet GÜMRÜKÇÜOĞLU for his support for almost

everything.

Ziya USTA

Trabzon 2021

 IV

STATEMENT OF ETHICS

I declare that this PhD thesis submitted with the title “The Design and Development of a

Web-Based 3D Geographic Information Management Framework” has been completed under

the guidance of my supervisor Prof. Dr. Çetin CÖMERT. All referred information used in this

thesis that is not original to this work has been indicated in the text and cited in the reference

list. I have obeyed all research and ethical rules during my research, and I accept all

responsibility if proven otherwise. 15/10/2021.

Ziya USTA

 V

TABLE OF CONTENTS

Page No

FOREWORD ……………………………………………………………………………...III

STATEMENT OF ETHICS ………………………………………………………………IV

TABLE OF CONTENTS ………………………….……………………………………....V

SUMMARY ……………………………………………………………………………...VII

ÖZET……… ……………………………………………………………………………VIII

LIST OF FIGURES …..…………………………………………………………………...IX

LIST OF TABLES ……………...………………………………………………………..XII

1. CHAPTER 1 GENERAL INFORMATION ... 1

1.1. Introduction ... 1

1.2. Problem Definition .. 2

1.3. Research Questions ... 3

1.4. Contributions ... 3

1.5. Structure and Scope of the Thesis ... 4

1.5.1. Structure of the Thesis .. 4
1.5.2. Scope of the Thesis ... 5

1.6. Background ... 6

1.6.1. Key Technologies and Concepts For 3D WebGIS Applications 6
2. CHAPTER 2 TILING, STREAMING AND DISPLAY OF 3D GEOSPATIAL

DATA ON THE WEB .. 29
2.1. Introduction ... 29

2.2. Related Work .. 30

2.3. Methodology ... 38

2.3.1. Decomposition of the 3D Geospatial Data .. 38

2.3.2. Updating 3D Tileset .. 44
2.3.3. Implementation of the 3D Tiles Specification .. 47

2.3.4. Development of the RESTful Web Services ... 56
2.3.5. Tiling of the Terrain .. 58

2.4. Findings and Discussion ... 67

2.4.1. Performance Comparison of R-Tree and Adaptive QuadTree 67
2.4.2. Hierarchical Data Structures or Regular Data Structure ... 68

 VI

2.4.3. Examining the Differences Between the Proposed Methodology and the Related
Works .. 69

2.4.4. Layer-Based or Object-Based Tiling Scheme ... 71

2.4.5. Order of the Operation During Tiling Process .. 72
2.4.6. High Precision Rendering of the 3D Tileset ... 72

2.4.7. Review of the 3D Tiles Specification ... 73
2.4.8. Evaluation of the Terrain Tiling and Quantized Mesh Specification 75

2.5. Conclusion ... 76

3. CHAPTER 3 WEB-BASED 3D ANALYSIS AND QUERY OF 3D GEOSPATIAL
DATA .. 78

3.1. Introduction ... 78

3.2. Related Work .. 79

3.3. Methodology ... 80

3.3.1. Storage of the 3D Geospatial Data .. 80
3.3.2. The 3D Intersection Algorithm ... 82

3.3.3. Integration of the 3D Intersection Algorithm with Tiling and 3D Tiles 86
3.3.4. Other Types of 3D Analyses Implemented in the Framework 87

3.4. Findings and Discussion ... 88

3.4.1. Performance of the 3D Intersection Algorithm ... 88

3.4.2. Limitations .. 88
3.5. Conclusion ... 91

4. CHAPTER 4 WEB-BASED PROCEDURAL MODELLING OF 3D MODELS . 92

4.1. Introduction ... 92

4.2. Background and Related Work ... 93

4.3. Methodology ... 95

4.3.1. Obtaining Roof Type Information .. 95

4.3.2. Extrusion and Block Model Generation .. 97
4.3.3. Construction of the Roof Geometries ... 100

4.3.4. Visualization of the 3DCM via Browser ... 105
4.4. Findings and Discussion ... 106

4.4.1. Performance Metrics of the Roof Type Prediction ... 106
4.4.2. Special Cases and Floating-Point Issues ... 108

4.5. Conclusion ... 109

5. REFERENCES…………………………………………………………………...109

CURRICULUM VITAE

 VII

PhD. Thesis

SUMMARY

THE DESIGN AND DEVELOPMENT OF A WEB-BASED 3D GEOGRAPHIC
INFORMATION MANAGEMENT FRAMEWORK

Ziya USTA

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences

Geomatics Engineering Graduate Program
Supervisor: Prof. Dr. Çetin Cömert

2021, 115 Pages

Management of 3D geospatial data involves four distinct steps: creation, analysis, query, and

visualization. However, the existing works mostly focus only on the visualization step. There are

other aspects to be tackled such as interoperability, 3D analysis and query, managing varying levels

of detail, and 3D model creation.

Imposed by web environments, the main problem with the management of large-scale

geospatial 3D data is the requirement to work via smaller chunks of the data. Browsers impose

memory limits and networking protocols impose traffic management restrictions.

Hence in this thesis, for the first time in the literature a web framework has been designed

and developed for management of 3D geospatial data using only open-source software components.

End-users can create their 3D models, tile 3D data, analyze and query 3D data and can visualize 3D

without any software component of plug-in installation. Using modelling component of the

framework, 3D models can be generated procedurally using only 2D data for the first time on the

web. Using the tiling component, large-scale 3D geospatial data can be decomposed to tiles and the

tileset can be visualized via browsers efficiently. The efficiency comes from that developed

framework guarantees the rendering performance as 60fps while displaying tiles. Using analyze

component, 3D analyzes, and queries can be performed, and result can be visualized on the web.

To perform 3D analyzes efficiently a new 3D intersection algorithm has been developed and used

in the analyze component of the developed framework. 3D Tiles specification and Quantized Mesh

specification have been implemented while developing the framework to ensure the interoperability

of the framework with other software components.

Key Words: 3D WebGIS, 3D Geospatial Data, 3D Analyzes, 3D Modelling, 3D Data Structures

 VIII

Doktora Tezi

ÖZET

WEB TABANLI 3B COĞRAFİ BİLGİ YÖNETİMİ İÇİN BİR ÇATI TASARIMI VE
GELİŞTİRİLMESİ

Ziya USTA

Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü

Harita Mühendisliği Anabilim Dalı
Danışman: Prof. Dr. Çetin CÖMERT

2021, 115 Sayfa

3B Coğrafi verinin yönetimi dört ayrı adımdan oluşmaktadır: Oluşturma, analiz, sorgu ve

görselleştirme. Mevcut çalışmaların çoğunluğu sadece görselleştirme adımına odaklanmaktadır.

3B veri yönetimindeki ana problem web ortamları tarafından dayatılan daha küçük boyutlu

verilerle çalışma zorunluluğudur. Tarayıcılar hafıza sınırı kısıtı dayatırken ağ protokolleri veri

trafiği yönetimi sınırlamaları dayatmaktadır.

Bu tezde, literatürde bir ilk olarak, 3B konumsal verinin web tabanlı yönetilmesi için bir web

çatısı tasarlanmış ve sadece açık kaynak kodlu yazılım bileşenleri ile geliştirilmiştir. Son

kullanıcılar geliştirilen bu çatıyı kullanarak herhangi bir yazılım bileşeni ya da eklenti kurulumu

gerekmeden 3B modellerini oluşturabilir, bölümleyebilir, üzerlerinde analiz ve sorgular

gerçekleştirebilirler. Çatının modelleme bileşeni kullanılarak literatürde ilk defa bu bileşen ile

sadece 2B veri girdisinden prosedürel modelleme yöntemi ile 3D modeller web tabanlı olarak

üretilebilir. Bölümleme bileşeni kullanılarak büyük boyutlu 3B konumsal veri bölümlenebilir ve

oluşturulan bölümler etkin bir şekilde tarayıcıda görüntülenebilir. Etkinlik, geliştirilen çatının

görüntüleme performansı olarak 60fps değerini garanti edebilmesinden kaynaklanmaktadır. Analiz

bileşeni kullanılarak 3B analiz ve sorgular gerçekleştirilebilir ve sonuçlar web tabanlı olarak

görüntülenebilir. Analizleri etkin bir şekilde gerçekleştirebilmek için yeni bir 3B kesişim

algoritması geliştirilmiştir ve çatının analiz bileşenine entegre edilmiştir. Çatının diğer yazılım

bileşenleri ile birlikte çalışabilmesi için çatı geliştirilirken 3D Tiles ve Quantized Mesh standartları

kullanılmıştır.

Anahtar Kelimeler: 3B WebCBS, 3B Konumsal Veri, 3B Analizler, 3B Modelleme, 3B Veri
Yapıları

 IX

LIST OF FIGURES

Page No

Figure 1. Visualization Pipeline with Hardware and Software Support. 8

Figure 2. Camera parameters that define view frustum .. 9

Figure 3. View Frustum (top) and frustum culling (bottom) (Om användning, 2010) 10

Figure 4. An object stored as coordinate sequences in a GeoJSON file. 12

Figure 5. An object stored as vertex and index arrays in an OBJ file. 12

Figure 6. Scene graph representation of the universe. .. 13

Figure 7. Distributed Visualization Pipeline (Doyle and Cuthbert, 1998). 18

Figure 8. Classification of client-based rendering methods (Evans et al. 2014). 19

Figure 9. A small part of a CityGML file. .. 22

Figure 10. A small part of a X3D file. .. 23

Figure 11. A small part of a CityJSON file. .. 24

Figure 12. Binary data and its encoding in a glTF file. ... 25

Figure 13. glTF file and its contents. .. 25

Figure 14. Regular tiling of the CityGML dataset (Gesquiere and Manin, 2012) 32

Figure 15. Regular tiles can be seen in the web map client of 3DCityDB 33

Figure 16. Rendering Strategy for Progressive Visualization (Gaillerd et al., 2015) 34

Figure 17. Streaming algorithm loads additional tiles and removes that are not
visiblebased on camera position (Krämer and Gutbell, 2015). 35

Figure 18. 3D geospatial data decomposed to R-Tree structure ... 41

Figure 19. Pseudo code for R-Tree construction ... 42

Figure 20. Tile borders overlap and features are always completely inside of a node. 43

Figure 21. QuadTree decomposition of the 3D geospatial data. ... 44

Figure 22. Updating tile borders in order to preserve object integrity. 44

Figure 23. Pseudo code for Adaptive QuadTree construction .. 45

Figure 24. Pseudo code for adding new feature in R-Tree .. 46

Figure 25. Pseudo code for adding a new feature in Adaptive QuadTree 47

Figure 26. Pseudo code for removing a feature in R-Tree and Adaptive QuadTree 47

Figure 27. A part of a tileset.json file that describes 3 levels hierarchy 48

Figure 28. UML Class Diagram for A Tileset in 3D Tiles ... 49

Figure 29. 3D polygon surfaces (left), triangulated polygons (right) 50

 X

Figure 30. Rendering without vertex normals (left) and with vertex normals (right) 51

Figure 31. Buildings over the terrain (top), buildings clamped to the terrain (bottom) 52

Figure 32. Relationship between geometric error and space screen error (URL-19). 53

Figure 33. A tile and its child rendered using additive method .. 54

Figure 34. View Frustum and tiles (URL-19) ... 55

Figure 35. View frustum and tiles (URL-19) .. 56

Figure 36. Displaying varying LODs according to the distance of the camera 57

Figure 37. Generated tileset.json file for a multi LOD dataset ... 57

Figure 38. System Overview ... 59

Figure 39. TileMap Diagram according to TMS (TMS, 2010) ... 60

Figure 40. First 3 levels of tiles in the quantized-mesh specification 61

Figure 41. layer.json file for our terrain dataset. ... 61

Figure 42. Step by step RDP Line Simplification. Green points are selected as points to
keep and red points are removed during the simplification process. 63

Figure 43. The blue point is invisible to the viewer due to the spherical shape of the earth
(URL-21). ... 65

Figure 44. Computation of Point P, the HOP (URL-22) ... 66

Figure 45. QMesh class used for storing terrain data in quantized mesh format 68

Figure 46. Testing the rendering performance .. 72

Figure 47. Concepts and Technologies Used in 3D Tiles Standard 74

Figure 48. Intersection of triangles (Yellow) with tile borders (Green) 76

Figure 49. Cracks on the left and bottom edges of the tile. ... 77

Figure 50. An example of a single document in the “tiles” collection. 82

Figure 51. An example of two documents in the “attributes” collection 83

Figure 52. Sweep Plane and collision detection .. 84

Figure 53. Half-Edge data structure .. 85

Figure 54. Two objects are about to intersect. .. 86

Figure 55. Intersection is calculated and rendered as a red polygonal mesh. 86

Figure 56. A sphere and a cylinder constructed as a result of 3D Buffer analysis 88

Figure 57. Non manifold shape. Red edge is incident to four faces 90

Figure 58. A special case none of the vertices of the objects are inside the other object ... 90

Figure 59. Training and Prediction Processes. .. 97

 XI

Figure 60. Calculation of the surface normal .. 98

Figure 61. 2D building footprints (left) 3D block model (right). .. 98

Figure 62. Condominium unit plan (Çağdaş, 2012). ... 99

Figure 63. Polygons (left) multiplied and translated (middle) condominium unit in 3D. . 100

Figure 64. 3D condominiums stored in the CityJSON file. .. 101

Figure 65. Input polygon (green), wave fronts (purple lines) and SS (red lines). 102

Figure 66. Edge Event (Yellow edge shrinks to zero at the orange point) 103

Figure 67. Split Event (yellow edge meets red reflex vertex and this creates blue polygon).
 .. 103

Figure 68. Sweep Line Process. .. 105

Figure 69. General System Architecture. .. 106

Figure 70. Red roofs: Flats, Green roofs: Hippeds, Purple roofs: Gables. 107

Figure 71. Performance metrics of training process. .. 108

Figure 72. Degeneration. Two Edge Events must meet on the same point (left) but not
properly they do not meet (right). ... 110

 XII

LIST OF TABLES
Page No

Table 1. WebGL libraries and their major capabilities. .. 16

Table 2. Summary of the related Works ... 37

Table 3. Summary of the software components. ... 38

Table 4. System Specifications of the Test Machine .. 39

Table 5. Performance metrics of the data structures ... 69

Table 6. Example of Half-Edge Data Structure .. 85

Table 7. Performance of the 3D Difference Based on 3D Intersection Algorithm. 89

Table 8. Confusion matrix of prediction process .. 108

Table 9. Performance metrics of prediction process ... 109

1. CHAPTER 1 GENERAL INFORMATION

1.1. Introduction

Forming the basis for many spatial information processing applications, digital

elevation models (DEM) refer to a 2.5D representation. DEM is based on the principle that

the topographic surface is defined mathematically by represented with a function (f).

Determining the function “f” is a “surface fitting” problem. With a mathematically defined

surface, it is now possible to perform many analyses or applications that this definition

allows. However, in such a definition, since the z value of any point will be calculated by

the formula "z = f (x, y)," a single z value can be obtained against the same x and y values.

Such a definition or representation is called 2.5D. In a 3D representation, multiple z values

can be obtained against the same x and y values. In other words, in contrast to 2.5D

representation, 3D representation allows in which not only the surface but above and below

the surface can be defined. Therefore, in the analyses which require 3D representation,

DEMs will be insufficient to use. Analysis involving objects that need to be defined above

and below the surface, such as shadow analysis, various geological analysis, and airflow

analysis, will require 3D representation.

Today, the main input data for 3D GIS applications that require 3D representation are

3D City Models (3DCM). A 3DCM is a digital representation of city objects with three-

dimensional geometry and attribute information, with buildings as the most prominent

feature.

With the advancement in 3D Graphics and computational capacities of computers, the

use of 3DCMs is becoming increasingly common. Many cities around the world are adopting

their own 3DCMs. Even in Turkey, which has always been a problematic country about data

acquisition and sharing, with a nationwide project called "3D City Models and Cadastre",

3DCMs of every province are being produced.

With rapid developments in web technologies such as HTML5 and WebGL, WebGIS

applications have replaced desktop applications for 3D GIS. The ability to visualize 3DCMs

and interact with 3DCMs via browsers has become an exciting and trending topic (Rodriguez

et al., 2013). Access to 3DCMs from internet browsers enables the use of 3DCMs by a large

mass of professionals who are not experts in spatial information but who can benefit from

2

3DCM in their own studies (Prandi et al., 2015). With the dramatic increase in using 3DCMs

and advancements in web technologies, a new research topic called 3D WebGIS has

emerged.

1.2. Problem Definition

Despite the importance of web-based management of 3DCMs, this topic has not been

investigated extensively. Management of 3DCMs involves four distinct steps; creation,

analysis, query and visualization. However, the existing 3D WebGIS works mostly focus

only on the visualization step. Although 3D visualization is an important aspect of 3DCM

management, there are other aspects to be tackled such as interoperability, 3D analysis and

query, managing varying levels of detail, and 3D model creation.

Imposed by web environments, the main problem with the management of large-scale

geospatial 3D data is the requirement to work via smaller chunks of the data. Browsers

impose memory limits and networking protocols impose traffic management restrictions.

Thus, algorithms will have to figure out, either during visualisation or analyses, the affected

chunks and manage the operation accordingly. Some examples to the management difficulty

when working with the smaller chunks, called “tiles”, would be to preserve object integrity

due to tile borders and updating the tiles’ contents when their data is changed.

The interoperability problem refers to the neglectance of this issue in most of the

related work. The way of developing interoperable applications is to employ standards. One

problem here is the immaturity of the 3D geospatial data standards. The immaturity is due

to by either their definition or the limited number implementations.

Concerning 3D analyses and query, the issue is whether the analyses are carried out in

an “online” or “offline” mode. In the offline mode, the analyses are performed on a desktop

3D software and the result is “packed” and sent to the client for visualisation. The so-called

“3D web GIS” implementations generally operate on this mode. This makes the “real time

playing with the 3D model” awkward; when a user wants to modify the parameters of an

analysis he has to re-perform the analysis on the desktop and repeat the remaining steps. In

addition, user needs and works with two different software. This is in no way online with

the “true” web based operational mode where all the interactions of the user are over a single

web based software. This way, a user can perform his/her analyses using the same web-

3

based software in an online mode. The needed here are the mechanisms of organizing the

tiles and tiling accordingly, which have been prototypically implemented in this thesis.

With respect to managing varying levels of detail the issue revolves around being

multiscale or multi-representational. In the multiscale mode, the data is generally organized

into different tileset for each different level of detail. Whereas in the multi-representation

the different levels of detail can be handled in a single tileset. There are pros and cons of

each alternative, which will be discussed later in the thesis. A thorough discussion of the

topic is missing in the literature.

Concerning the creation of 3D city models, one part of the issue is the lack of open-

source components. To our knowledge there is only one open-source tool from Delft

University. Other well-known tool is the CGA (Computer Generated Architecture)

component of ESRI CityEngine, which is not web based currently and a commercial product.

In this thesis a web-based component has been developed as a REST web service.

1.3. Research Questions

Research questions focus on designing and implementing a 3D SaaS tool, which

realizes the management of large-scale 3D geospatial data online by examining today's

modern web technologies and 3D GIS capabilities. In this context, research questions have

been explained below.

The thesis investigates the below research questions:

1- What are the most up-to-date and most suitable web technologies preferably

open-source for the management of 3DCMs?

2- What are the open standards and formats that can be used for the streaming

of the 3DCMs on the web?

3- Which tiling scheme must be used for decomposition of the data?

4- What would be the “right” implementation of different levels of detail?

Should it be multi-scale or multi-representational?

5- Are “online” web-based 3D analyses viable?

6- Is a web based procedural modelling component viable for 3D model

generation from 2D?

4

1.4. Contributions

· Investigation of modern web technologies and concepts that can be used in

3DCM management in Chapter 1.

. A comprehensive literature review for web based management of 3DCMs in

Chapter 1, Chapter 2, Chapter 3, and Chapter 4.

· Investigation of spatial data structures for the tiling of 3DCMs in Chapter 2.

· Design and implementation of an interoperable 3D tiling system for large-

scale 3D geospatial data based on OGC 3DTiles specification supports

multiple spatial data structures in Chapter 2.

· Developing a novel, fast algorithm 3D intersection for the web-based real-

time 3D overlay analyses of 3D polygonal meshes in Chapter 3.

· Prototype implementation of the developed 3D intersection algorithm for the

realization of web-based 3D Analysis in Chapter 3.

· Design and implementation of web-based procedural 3D model generation in

Chapter 4

1.5. Structure and Scope of the Thesis

1.5.1. Structure of the Thesis

This thesis is based on papers I have published during my PhD and also based on

projects that I carried on during my PhD. Most of the parts have been updated and extended

to include the latest research and developments. These updates and extensions cover the

timeline that begins at the publication dates and deadlines of the projects until the publication

of the thesis. Also, some parts of the papers and projects have been distributed across

multiple chapters of the thesis.

The thesis has been organized into 4 chapters. Chapter 1 discusses the fundamentals

that must be known to understand before diving deeper into the proposed research and works

such as key web technologies for web-based management of 3D geospatial data. Chapter 2

deals with streaming and visualization of large-scale 3D geospatial data on the web. Chapter

2 discusses how this challenging task can be realized using modern web technologies and

proposes a tiling and a rendering service for implementation of these purposes. Chapter 3

5

concerns web-based 3D analysis and query capabilities and how they can be implemented

in web environments. How the visualization of analysis and query results can be integrated

with proposed tiling and rendering services of Chapter 2. Chapter 4 discusses procedural

generation of 3D models from 2D datasets and its implementation in a web environment.

Also, the web service that was designed and implemented for this purpose is explained.

1.5.2. Scope of the Thesis

This thesis is concerned with the management of the large-scale 3D geospatial data

online. For this purpose, a web framework is developed. While developing this framework

following objectives have been considered.

Only open-source software components must be used to develop the framework.

Software components should be developed in accordance with 3D standards whenever

possible for interoperability.

Mostly, 3D geospatial data is stored and published as 3DCMs by vendors and

geometries of the city objects are stored as 3D polygonal meshes in 3DCMs. Although, 3D

geospatial data can be in many different representations such as Voxels, Point Clouds, B-

Rep (Boundary Representation), Constructive Solid Geometry (CSG) and etc., these

representations are not considered in this thesis; only 3D polygonal mesh representation is

considered. No doubt, the proposed web framework could be extended to include the other

representations as well. However, this thesis focuses on decomposition and management of

the large-scale 3D geospatial data on the web rather than its different representations.

Analysis is the analytic process that examines geometric or topological properties of

features and extract new information. There are a wide range of different analysis techniques

in the GIS domain such as overlay analysis, proximity analysis, network analysis etc. In this

thesis only 3D overlay analyses which are 3D intersect, 3D clip, 3D erase, and 3D difference

are considered and implemented. 3D topological operations, 3D map algebra are considered

out of scope. Additionally, poor data may cause errors in the analysis. Correctness of the

data is the responsibility of the end user. None of the developed software components try to

detect and repair the errors in the data for you. 3D data quality is not addressed within the

thesis since it is a completely different research topic

There are many roof types and modelling each of them requires a different algorithm.

In this thesis, only the four most used roof types that are explained in Chapter 4 are

6

considered. This thesis focuses on modelling of roofs using only widely available 2D data

such as building footprints and satellite imagery. Modelling some other roof types requires

additional data such as floor plans and architectural drawings which are not widely available.

1.6. Background

1.6.1. Key Technologies and Concepts For 3D WebGIS Applications

1.6.1.1. HTML5 and WebGL

HTML is the World Wide Web's core markup language used to structure and present

content on the World Wide Web. HTML is the standard markup language for documents

designed to be displayed in a web browser and it is an open standard. (URL-1). HTML5 is

the fifth version of this standard. The biggest contribution of HTML5 in terms of 3D

WebGIS applications, is the new "canvas" element used to render 3D contents on web pages.

Canvas element provides an API and contexts to draw graphics. For 3D graphics, it

provides WebGL contexts. WebGL is a cross-platform, royalty-free web standard for a low-

level 3D graphics API based on OpenGL ES, exposed to ECMAScript via the HTML5

Canvas element (Khronos, 2014).

Before the invention of WebGL, in order to visualize 3D content via browsers and

developing 3D web applications, additional plug-ins must be used or standalone software

had to be installed on the client's device, such as Flash and Silverlight. Plugins for browsers

such as Cortona3D (URL-2), FreeWRL (URL-3), or Java applets such as XNavigator (URL-

4) have been used for visualizing 3D contents on the web. Nasa WorldWind (URL-5) and

Google Earth (URL-6) were able to work web based but had to be downloaded and installed.

After being redeveloped using WebGL, Google Earth now can be used without any

additional installation. Another example is Unity Web Player which is now deprecated and

had to be installed for displaying video games developed using Unity3D in the browsers.

Many 3D web applications such as GeoPortail (URL-7) and 3D Macau (URL-8) require the

installation of an additional software called Terra Explorer as a 3D viewer on the client's

device. Open3DGIS (O3DG) (URL-9) application requires plug-in installation.

7

One of the major advantages of WebGL is that it is supported by all browsers; hence

it does not require a plug-in. Using HTML5 and WebGL together, it is possible to develop

3D web applications without additional software or plug-in installation.

WebGL provides access to developers via JavaScript from the browser to the client's

GPU (Parisi, 2014). Hence, it enables GPU-accelerated algorithms to visualize 3D data and

perform operations on 3D data (Taraldsvik, 2011) that improves performance.

WebGL is a de facto standard for 3D graphics on the web. There are two versions of

WebGL. WebGL 1.0 is based on OpenGL ES 2.0 and WebGL 2.0 is based on OpenGL ES

3.0. WebGL 2.0 is released in 2017 and brings some improvements to WebGL 1.0, such as

multiple draw buffers that enables drawing multiple buffers at once from a shader and

instanced drawing that enables rendering multiple copies of the same 3D content. At the time

of writing this thesis, WebGL 2.0 is not supported by Safari, which means that 3D web

applications developed with WebGL 2.0 will not work properly in Safari. In contrast to

Safari, most modern browsers and libraries support WebGL 2.0 and WebGL 2.0 will become

more common shortly.

WebGL is based on OpenGL, originally developed in 1992 and started to get old in

today’s technology stack. Today, modern GPUs are more complex and powerful than 29

years ago. To better take advantage of modern GPUs' advanced features, new graphic APIs

have been developed after OpenGL. These APIs are often referred to as "modern graphic

APIs".

One of the modern graphic APIs is Vulkan (URL-10). Vulkan is developed by

Khronos, the group behind OpenGL as a cross-platform graphic API that can work on all

systems and released in 2016. While Vulkan is being developed by Khronos, “DirectX12”

(URL-11) has been developed by Microsoft and “Metal” (URL-12) has been developed by

Apple. In contrast to Vulkan, DirectX12 has been developed to be used in the Microsoft

platform and Metal has been developed to be used in macOS and IOS platforms. Compared

to OpenGL, they are more low level and performant.

At the time of writing this thesis, there is ongoing work about a new graphic API for

browsers based on modern Graphic APIs called WebGPU currently being developed by

W3C GPU for the Web Community Group (URL-13). Although specification has not been

completed yet, it has already started to be supported by the major browsers such as Safari,

Firefox, and Chrome. It will be the successor of WebGL in the near future.

8

1.6.1.2. Visualization Pipelines in Web Applications

The visualization pipeline consists of three major conceptual steps; Filtering,

Mapping, and Rendering (Doyle and Cuthbert 1998, Hildebrandtand 2014, Klimke 2019,

Koukofikis et al., 2018). Filtering and mapping steps are executed on CPU by utilizing a

data structure called scene graph while the rendering process is executed on GPU utilizing

graphic APIs (Figure 1). These steps have been explained in more detail in the following

sections.

Figure 1. Visualization Pipeline with Hardware and Software Support.

1.6.1.2.1. Filtering Step

To be able to display objects from different angles a “synthetic” camera object is used.

Camera parameters define the visible area which is referred to as view frustum or viewing

frustum in Computer Graphics (Figure 2). In the filtering step, objects that fall into the view

frustum are selected from a larger geospatial dataset. This process is often called “frustum

culling” in Computer Graphics.

9

Figure 2. Camera parameters that define view frustum

10

Figure 3. View Frustum (top) and frustum culling (bottom) (Om användning, 2010)

For the frustum culling process each vertex of the data is tested against visible volume.

Using camera parameters, the view frustum is constructed as a polyhedron. Then performing

ray-surface intersection tests it is determined whether each vertex is inside or outside of the

view frustum. These spatial queries are computationally expensive and must be optimized

11

well especially in a web environment. This is where scene graphs which are explained more

detailed in the next sections come to usage.

Additionally, in the geospatial applications filtering is not always made according to

camera parameters. Culling process can be done according to the results of an analysis or

query. After an analysis and query, in order to show results to the user, only the features that

have the desired results are selected.

1.6.1.2.2. Mapping Step

In this step, filtered geometry is mapped to visual representations for rendering. In

geospatial formats, geometric data is usually stored as ordered coordinate arrays. These

coordinate arrays are stored according to a winding order “clockwise” or “counterclockwise”

can be seen in Figure 4. Rendering step is done using graphical APIs on the GPU and in the

graphic APIs, geometric data is stored as vertex and index arrays (Figure 5). Hence, in the

mapping step, geometric data in the form of coordinate arrays is converted to vertex buffers

and index buffers which graphic APIs accept. Thus, filtered geometric data is mapped to

data types on the graphic API such as vertex buffer object (VBO) and index buffer object

(IBO). Additionally, in this step, all of the other attributes that affect the appearance of the

objects are mapped such as colour, opacity, and texture.

12

Figure 4. An object stored as coordinate sequences in a GeoJSON file.

Figure 5. An object stored as vertex and index arrays in an OBJ file.

1.6.1.2.3. Scene Graphs

Scene Graph is a data structure, which is mainly used to describe the objects, attributes,

and object relationships in a scene (Xu et al., 2020). Scene graph is a directed acyclic graph

where each node represents a local space in a 3D scene. Scene graphs are constructed in a

13

hierarchical manner and contents of a node in a scene graph must be completely inside of a

bounding volume of the parent node.

Using the spatial and hierarchical properties of the nodes in a scene graph, filtering

and mapping steps of the visualization pipeline can be optimized. To better understand a

scene graph, let’s think of it with an example. In this example we want to represent and

display our universe as a 3D scene. To construct a scene graph, stars, galaxies, and planets

are arranged hierarchically and can be seen in Figure 6. The current view frustum intersects

only objects which take place in Europe (Figure 6).

Figure 6. Scene graph representation of the universe.

Instead of doing visibility tests for each object in the scene for frustum culling, the

scene graph is traversed and only the contents of the nodes which intersect with view frustum

14

and its children are tested. These nodes are “Earth” and “Europe” for the given example.

There is no need to perform visibility checks for the other nodes. If a parent is outside the

frustum this means its children are also outside the frustum. Thus, the number of the visibility

tests decrease significantly, and performance improves.

Another optimization technique that can be implemented by imposing scene graphs is

“state sorting”. State sorting is grouping objects that have similar graphical properties such

as texture and materials into a node while constructing a scene graph. Hence similar objects

are batched and drawn together with the least number of state changes such as set colour, set

texture, which are expensive in GPU.

In the scene graph, there are three types of nodes as the root node, non-leaf nodes, and

leaf nodes. The root node represents the whole collection of objects in the 3D scene. Non-

leaf nodes are internal nodes of scene graphs. They can contain any number of children and

represent the logical and spatial aggregation of objects. Leaf nodes are the bottom nodes in

the scene graph, which have no children.

Scene graphs can be constructed in two ways. One approach is to store geometry only

in leaf nodes. At the upper nodes in the hierarchy, aggregation is done using pointers to leaf

nodes. In the second approach, every node in the scene graph can store its own geometry.

The first approach increases storage efficiency by storing geometry only once but requires

traversing the scene graph at the runtime in order to find the relevant data for the upper nodes

in the hierarchy. The second approach does not require traversing scene graphs for finding

relevant data of the node, because every node stores its own geometry; hence, it is more

performant than the first approach. Nevertheless, it decreases storage efficiency because

some geometries are stored more than once. The choice between the two approaches is up

to the requirements of the application.

1.6.1.2.4. Rendering Step

Rendering is the last step of the visualization pipeline. In Computer Graphics, the term

"rendering" refers to the process of producing 2D images from a 3D scene. A 3D scene that

is produced after the filtering and mapping steps is sent to the GPU for the render process.

Using visual elements such as position, colour, opacity and texture, a 2D projection of a 3D

scene is produced according to a viewpoint using graphic APIs that are compiled on the

GPU.

15

For rendering, two small pieces of the program run on the GPU, a vertex shader, and

a fragment shader. Vertex shader takes vertex array, index array, normals, colour, texture

coordinates and calculates screen coordinates of vertices. A vertex shader runs once for each

vertex of a 3D scene. Vertex shader processes three types of data; attributes, uniforms and

varyings. Attributes are used to store information that can differ for each vertex such as

position, colour, vertex normals, texture coordinates. Uniforms are used to store information

that is the same for each vertex such as transformation matrices and lightning positions.

Varyings are used to store information that is passed from vertex shader to fragment shader.

Fragment shader runs once for each pixel of the scene. It takes information in the forms

of uniforms, varyings, and pixels then calculates colour and depth values for each pixel.

In WebGL, vertex shader and fragment shader are written in a language called GLSL

(Graphics Library Shading Language) It is a C type low-level language that compiles and

runs on GPUs.

1.6.1.2.5. WebGL Libraries

Not surprisingly, many JavaScript libraries have been developed on top of WebGL

that abstract low-level coding and provide high-level APIs while still making it possible to

enjoy the benefits of WebGL. These libraries significantly reduce the application

development time. They automatically perform filtering, mapping and rendering steps

according to data and parameters supplied to them. Using only WebGL without JavaScript

libraries, many works that these libraries do under the hood must be implemented by the

developer. For instance, lightning must be explicitly defined by implementing an

illumination model on your own. Vertex and fragment shaders must be written in GLSL. All

of these low-level graphical processes make WebGL very verbose. Because of this nearly

all of the web-based 3D applications in the literature use WebGL libraries. To give a

complete list of WebGL libraries is out of the scope of this thesis, however, it is worth

mentioning some of them which are open source and used in geospatial applications.

There are many WebGL libraries as well. Three.js, Cesium.js, Babylon.js, Deck.gl,

Harp.gl, MapboxGL.js and iTowns are worth mentioning among them. Evans et al. (2014)

have surveyed browser-based rendering approaches that include some 3D formats and

WebGL libraries. Also, Kramer et al. (2015) tested some of the WebGL libraries on real-

world geospatial use case scenarios. Since new libraries have been developed after Kramer

16

et al. (2015) and Evans et al. (2014), a new comparative summary in terms of WebGL

libraries has been given in Table 1. For 3D WebGIS applications, there is no one fit for all

WebGL libraries; hence selection of the library highly depends on the use case and

application requirements. WebGL library should be chosen by considering some key aspects

for a 3D geospatial application such as 3D format support variety, low-level access

capability to WebGL, WebGPU support, the capability to connect existing OGC services

and support for 3D streaming standards.

Table 1. WebGL libraries and their major capabilities.

WebGL
Library

Support
for glTF

Low-Level
Access to
WebGL

Support for
WebGPU

WFS,
WMS
Support

3D Tiles or
I3S
Support

Three.js Yes Yes Partially No No

X3DOM Yes No No No No

Cesium.js Yes No No Yes Yes

Deck.gl Yes Yes No No Yes

MapboxGL.js No Yes No Yes No

Harp.gl Yes Yes No No No

Babylon.js Yes Yes Yes No No

iTowns Yes Yes No Yes Yes

glTF is the most efficient 3D format for web applications that utilize WebGL today.

MapboxGL.js has a big limitation for directly loading 3D models in glTF format. Thanks to

its low-level access to WebGL, glTF can be parsed and loaded with MapboxGL.js but this

attempt will require a lot of low-level coding which the primary purpose of the libraries is

to avoid. In that case, filtering and mapping steps must be done explicitly by the application

17

developer. Low-level access to WebGL means the ability to create custom shaders for

specific use cases. In this context, all of the libraries except X3DOM and Cesium.js provide

low-level access to WebGL by allowing creation of custom shaders and give more control

to application developers for visualization.

Considering the WebGPU will be the new standard graphic API and supported by all

major browsers in the near future, it is important that libraries should support WebGPU in

terms of reusability of the previously written rendering code using these libraries.

Another important aspect is the ability to visualize data which is published as WFS

and WMS. This makes it possible to render DTMs which are published as WFS or WMS as

basemaps underneath the 3DCMs. Hence, available data already published as WFS, or WMS

can be visualized easily. This increases interoperability of the applications and makes it

possible to use already published data in the applications. In this context, Cesium.js,

MapboxGL.js and iTowns, which are developed geo applications in mind, support this

feature.

3D streaming standards define organization of the 3D geospatial data on the server and

delivery formats for geo data. Hence, the 3D geospatial data organized according to these

standards can be rendered by clients which supports these standards easily. When the data

changes, the same rendering code will work perfectly as long as data is organized according

to these standards. Otherwise, low level code that contains render logic for a hierarchical

tileset must be coded explicitly by the application developer.

1.6.1.2.6. Distribution of the Visualization Pipeline

In a web application, the visualization pipeline steps described in previous sections

could be implemented in a distributed manner. Depending on the steps that are implemented

on the client or server, client-server architectures classified into three types in the context of

visualization (Klimke, 2019) (Figure 7):

1- Thick client - Thin Server: Client fetches filtered data from server and

mapping and rendering is implemented in the client.

2- Medium Client - Medium Server: Client fetches mapped data and renders it.

3- Thin Client - Thick Server: The client fetches the rendered image from the

server. All three steps of the visualization pipeline are implemented on the

server.

18

Figure 7. Distributed Visualization Pipeline (Doyle and Cuthbert, 1998).

In the Thin Client - thick server approach, since the rendering process is done in the

remote server, the client's hardware capabilities do not affect the render performance and

render quality. The 3D scene is rendered on the server, and the final view is sent to the client

as an image. This approach's major drawback is that for each user interaction such as zoom

in or rotation that modifies the view, a new view must be generated on the server and must

be sent to the client; hence, this approach increases network overhead between server and

client significantly. To decrease the negative effects of the increased network overhead on

the performance, this approach requires high-end hardware on the server-side. Despite the

powerful hardware support on the server, latency may occur in real-time applications that

depend on heavy user interaction. Examples for server-side rendering are Google Stadia,

Google's cloud-based gaming platform, GeForce Now, Nvidia’s cloud-based gaming

platform and Amazon Luna, Amazon’s cloud-based gaming platform.

19

In the thick client- thin server approach, since the rendering process is done on the

client's machine using the client's hardware, the client's hardware capabilities significantly

affect the rendering performance and render quality. However, in this approach, the data is

fetched only once from the server and cached in the browser's memory. As a result of the

user interaction, if modification of the scene does not require fetching new contents from the

server, the new view is produced from locally cached data. Hence this approach minimizes

the network overhead in the rendering process.

Jankowski et al. (2013) and Evans et al. (2014) classify the visualization approaches

into two categories as the declarative approach (retained mode) and the imperative approach

(immediate mode) (Figure 8).

Figure 8. Classification of client-based rendering methods (Evans et al. 2014).

In the declarative approach, only 3D content is provided to the browser using formats

such as X3D or glTF then the browser renders the 3D content in the background. In short,

only "what to draw" is provided to the browser. 3D content can be rendered without

imperative scripting. In the imperative approach, in addition to "what to render", "how to

draw" is also provided to the browser via low-level graphic APIs such as WebGL. In this

approach, every step of the rendering pipeline is defined explicitly, hence, gives developers

more control over the rendering pipeline in exchange for requiring a deeper understanding

of 3D graphics. Since every step is defined explicitly, low-level imperative scripting makes

20

the rendering process more performant; however, it slows down the process of developing

3D applications because its low-level nature requires much more time for coding and

debugging.

There are some limitations in the classification of Jankowski et al (2013) and Evans et

al (2014). Imperative and declarative approaches are not equivalent to each other and should

not be done with a binary classification as declarative and imperative. There are many

implementations in between. When we look at Figure 7, X3DOM has been placed as the

declarative equivalent of WebGL however X3DOM is a JavaScript library which

implements WebGL under the hood. There are many JavaScript libraries for 3D rendering

with WebGL which eases development of 3D applications by freeing developers from

writing low-level WebGL code and these libraries which makes imperative vs declarative

classification is very difficult are not included in the table. Additionally, the scene graph is

placed under the declarative headlines and creates the perception that there is no scene graph

implementation with WebGL. However, there are many WebGL libraries which implement

scene graphs.

1.6.1.3. 3D Formats on the Web

There are different data models that determine in which manner data can be stored,

organized, and manipulated. One of the most common data model approaches is the

hierarchical data model. In the hierarchical model data is organized into a tree-like structure,

where each record has a single parent or root. Each record is stored with its geometry and

attributes together. Common data is repetitively stored for each record. In hierarchical data

models, since searching for data requires traversing the entire model from top to bottom until

the required data is found, accessing the data at the bottom of the hierarchy is slow while

accessing the data at the top of the hierarchy is fast.

One of the most used 3D formats which follows the hierarchical data model approach

is CityGML. At the time of writing thesis CityGML is the only OGC standard for storage

and exchange of the 3DCMS. CityGML is designed as an open data model and XML-based

format for the storage and exchange of 3DCMs. CityGML defines the classes and relations

for the most relevant topographic objects in cities and regional models with respect to their

geometrical, topological, semantical, and appearance properties. “City” is broadly defined

to comprise not just built structures but also elevation, vegetation, water bodies, "city

21

furniture" and more. Included are generalization hierarchies between thematic classes,

aggregations, relations between objects, and spatial properties. CityGML is applicable for

large areas and small regions and can represent the terrain and 3D objects in different levels

of detail simultaneously (OGC, CityGML 2.0).

There are two versions of CityGML, CityGML 1.0 and CityGML 2.0, which have been

accepted as OGC Standard. At the time of writing this thesis, there is ongoing work about

the next major version, "CityGML 3.0," and it will be released as a new OGC standard. It

will bring several improvements and new functionalities. One of the most important

functionalities is the new “Dynamizer” module for representing time dynamic data in

3DCMs that is important in the context of smart cities and digital twins. The other important

one is the new "Versioning" module that stores and represents changes in the 3DCMs.

Detailed information about the other new functionalities and improvements can be found at

(Chaturvedi et al., 2017), (Chaturvedi and Kolbe 2017), (Kutzner and Kolbe, 2018) and

(Kutzner et al., 2020).

Even though the brand new CityGML 3.0 is considered, CityGML is not an

appropriate format for displaying 3DCMs directly in the browser. CityGML has the

disadvantages of the hierarchical data model which it follows. It is deeply nested and

contains data duplication (Figure 9).

Figure 9. A small part of a CityGML file.

22

Deeply nested structure requires nested loops which cause intensive CPU cycles to

parse and extract information from a CityGML file and data duplication increases memory

usage unnecessarily.

The other well-known 3D format which follows the hierarchical data model approach

is X3D. It was developed and maintained by the Web3D Consortium (URL-14) and became

an ISO standard. A small part of a X3D file can be seen in Figure 10.

Figure 10. A small part of a X3D file.

X3D is not as deeply nested as CityGML, however it has the same disadvantages such

as data duplication. Duplicated vertices can be seen in Figure 10 between two objects which

are two “Shapes” in X3D data model.

Another common data model approach for storage and organization of the data is the

network data model. In the network data model hierarchy between objects and the data are

seperated. The data which belongs to all of the objects is stored globally and relevant data

for an object is accessed using pointers. Hence, repetitive data is minimized in the network

data model. Also, network data model is easier to update than hierarchical data model

because a change in the geometry is automatically propagated to objects hence, objects now

point to updated geometry now.

23

CityJSON is the network data model equivalent of the well-known CityGML. It is an

OGC 3DCM standard candidate at the time of writing this thesis (Ledoux et al, 2019). In

the CityJSON Object hierarchy and geometric data is separated. Vertices are stored as a

global array and relevant data for each record is accessed using index numbers of the record

(Figure 11). Values of the boundaries point to vertex coordinates of a surface for an object

in Figure 11.

Figure 11. A small part of a CityJSON file.

Another popular format which follows the network data model approach is glTF (GL

Transmission Format). Cross-browser support of WebGL and widespread usage of it has

created the need for a new 3D format that is compact, suitable to be used with WebGL and

requires minimal processing for rendering. With these needs and goals, glTF, a new 3D file

format, has been created by Khronos Group, also the creator of OpenGL and WebGL. glTF

is the only 3D format which is created with WebGL in mind after the invention of the

WebGL in this section.

In contrast to X3D, which embeds all scene graph structures as XML elements, glTF

separates the scene graph and geometry. Geometry is represented as a binary block

containing vertices, indices, normals as raw byte arrays. The binary format for the block has

been designed according to WebGL specification. Hence, the binary file can be loaded

24

directly into the client's graphic card and can be rendered using WebGL without additional

processing.

In glTF format, the scene graph structure and geometry are separated. Scene graph is

described as JSON, and all of the geometry is stored as a single buffer in the binary file with

bin extension. Buffer is stored as a little-endian blob. A subset of data in the buffer is

represented via bufferView. A 44-byte buffer that represents a single triangle and its

encoding in glTF is shown in Figure 12.

Figure 12. Binary data and its encoding in a glTF file.

Accessors in a glTF file have been used to retrieve data as typed arrays from within a

bufferView. Using the information in the accessors and bufferViews, relevant geometric

information for an object can be extracted from the blob. Figure 13 shows the complete glTF

file for a triangle mesh.

25

Figure 13. glTF file and its contents.

X3D standard was developed in 2003, CityGML in 2008, glTF in 2017 and CityJSON

in 2019. 3D data formats which follow the hierarchical data model such as x3D and

CityGML use XML for encoding and can be considered a bit out of data. In contrast, Formats

which follow the network data model are respectively new and use JSON as encoding.

JSON is a much more preferred format by developers over XML. The main reason for

this is that JSON is easier to parse than XML. It does not require complex marshalling and

unmarshalling processes. Most programming languages have built-in data types that

correspond to key-value pairs in JSON, such as "Dictionaries” in Python, “Maps” in Java

and Golang. Hence, there is no need for external libraries while working with JSON files.

These native built-in data types ease the mapping of JSON content in these languages. Also,

since its native built-in data type, any JSON file can be parsed easily with JavaScript, which

is the most used browser-based script language. Additionally, JSON files are smaller than

their XML counterparts.

1.6.1.4. Standardization Efforts Related to Delivery of the 3D Geospatial Data
Over the Web.

A number of web service standards have been developed by OGC to deal with

visualization of spatial data on the web in an interoperable manner. These services can be

categorized into data services and portrayal services. Data services provide access to the

26

spatial data such as WFS and WCS, and portrayal services such as WMS deliver images of

the spatial data not the data itself (Altmer and Kolbe, 2003).

For 3D geospatial data OGC has published Web View Service (WVS) as “Discussion

Paper” (Hagedorn, B. 2010) and Web 3D Service Implementation Standard (W3DS)

(Schilling, A. and Kolbe T. H., 2010) as a Draft Specification. W3DS is designed as a “WFS

like” data service that accesses the 3D geodata itself utilizing “GetScene” operation. For a

decomposed dataset, W3DS specification offers “GetTile” operation. Using GetTile request

parameters TileLevel, TileRow and TileCow the relevant tile is fetched from the server. For

visualization of a specific area, mapping between camera parameters and tile request

parameters are missing in W3DS. Tiling related problems such as object integrity during

decomposition, definition of the data structure, tile size and update of the tileset are not

addressed in W3DS.

Unlike W3DS, WVS is designed as a “WMS like” portrayal service that delivers a 3D

rendered image of the data, not the data itself utilizing “GetView” operation. Tiling and

tilesets are neglected in WVS. Management of a tileset is proposed as a “future work”.

In 2012, OGC published 3D Portrayal Interoperability Experiment (3DPIE) Final

Report (3DPIE final report, OGC, 2012). In this 3DPIE activity, different use case scenarios

for service-based streaming of 3D geospatial data were implemented and tested using OGC

drafts for the candidate standards W3DS and WVS. Three different tests have been carried

out. In the first test, the whole CityGML data was fetched from the server and visualized on

a thick client. The purpose was to test the display of the CityGML directly on the browser.

Fetching and parsing the entire CityGML file and applying filtering, mapping and rendering

steps caused significant latency and performance issues on the client. Therefore, after this

test, pre-process and tiling of the CityGML file has been suggested as a result of the test. In

the second test, the entire CityGML data pre-processed in the server using JAXB (Java Xml

Binding) based parser and tiled into regular tiles. Hence, only the visible tiles have been

fetched from the server, progressive visualization has been accomplished based on the

camera parameters provided by the client. In the third test CityGML format has been

converted to JSON and visualized on the client using Three.js. For fetching the tiled 3DCM,

GetTile operation of the W3DS has been used in the tests in 3D PIE. Although CityGML

has been decomposed into regular tiles, how object integrity is maintained is not discussed.

Other tiling related problems such as choice of the data structure, tile size definition, and

how the tileset can be updated are not addressed as well.

27

After the interoperability tests and engineering reports essential parts of the W3DS and

WVS have been combined into one common service as “3D portrayal, hence 3D Portrayal

Service Standard (3DPS) published in 2017 (3DPS, 2017). 3DPS defines a standard service

interface for web-based 3D geodata portrayal. Two major operations are described in the

standard as “GetScene” operation and “GetView” operation. GetScene operation allows a

client to request and retrieve a scene graph in a standard data format from a 3DPS service.

The fetched data from the server is rendered on the client’s machine. Supported formats are

X3D, VRML, Esri I3S and glTF. In contrast to GetScene operation, GetView operation

allows a client to retrieve rendered images of a 3D scene based on the parameters defined in

the request. The rendering process is done on the server-side, and the rendered image is

fetched from the server. Supported image formats are PNG and JPEG. Although tiling is

suggested and pointed as future work in previous works, GetTile operation in the W3DS has

been deprecated in the 3DPS. The reason was that according to OGC there is no one-size-

fits-all solution for tiling 3D geodata (3DPS, 2017). Hence, tiling and tiling related problems

have been completely excluded in 3DPS. 3DPS focuses on the way of communication

between server and client for streaming of the 3D geospatial data on the web by defining

service interfaces, operations, request, and response parameters rather than tiling and

handling of the tilesets.

Then for the tiling of the 3D geospatial data and streaming of the tileset, OGC has been

published two standards, 3D Tiles and Indexed 3D Scene Specification (I3S) Indexed 3D

Scene Specification (URL-15) developed by ESRI and 3D Tiles specification developed by

Cesium (URL-16). Both specifications are open and optimized for streaming and rendering

3D geospatial data over the web. The foundation of these specifications is spatial hierarchical

data structures. Although I3S is an open standard, it is generally used by ESRI products.

There is no open-source software or component that generates a tileset according to I3S. It

is only used in a few applications (Koukofikis et al., 2018). On the other hand, 3D Tiles has

been started to be used by many commercial and open-source software components. These

components have been described in section 2.3 “Related Work”. For its open nature, 3D

Tiles has been selected and implemented while developing web components in this thesis. .

3D Tiles is based on a spatial data structure that enables the Hierarchical Level of

Detail (HLOD); hence, only visible tiles are streamed for a given 3D view (3D Tiles

Specification, 2019).

28

The specification supports many spatial data structures such as k-d trees, quadtrees,

octrees, r-trees, and many others as long as the data structure is a hierarchical tree. To decide

which data structure will be used for tiling is the burden of the developer. In 3D Tiles, a

tileset is a set of tiles organized in a hierarchical spatial data structure, and a tile is a node in

this data structure. The hierarchy and metadata about tiles are described in a file called

“tileset.json”.

After 3D Tiles, OGC continues to do a lot of work for standardizing service-based

delivery of 3D geodata on the web through a series of engineering reports. OGC published

a draft specification for 3D geodata API that organizes access to a variety of 3D datasets

according to a nested hierarchy of 3D geo data. (OGC API-Tiles-3D Engineering Report,

2020). In this 3D GeoVolumes also called 3D Container work, OGC tries to standardize API

access to tiled 3D geodata resources by standardizing URL definitions for HTTP Get

methods of REST APIs.

If the standards mentioned throughout this section are evaluated, it will be seen that

3D Tiles and I3S standardize organization of the 3DCMs on the server by utilizing

hierarchical data structures and different delivery formats. 3DPS standards the way of

communication between the server and the client in the context of 3D geospatial data.

Finally, 3D GeoVolumes try to standardize the way of the access to 3D geo data on the web

by defining standard URL paths for HTTP methods.

As can be seen, standardization efforts continue and although there are brand new 3D

standards, interoperability is not a solved problem for web-based management of the large-

scale 3D geospatial data.

2. CHAPTER 2 TILING, STREAMING AND DISPLAY OF 3D GEOSPATIAL

DATA ON THE WEB

2.1. Introduction

For streaming and visualization of 3D geospatial data, the data is decomposed into

multiple tiles. As needed, relevant tiles are sent over the network and processed by client

components. Streaming and displaying only the most relevant data decreases the amount of

the data transmitted and improves performance significantly. Nevertheless, tiling 3D

geospatial data are respectively new and works on the topic are rare. While tiling improves

performance, it creates many other problems revolving around generation and management

of the tileset.

While generating 3D tileset, decomposition of the 3D geospatial data is made

according to a data structure. Some data structures are better for analyses and spatial queries

while others are preferable for data visualization. In this context, the data structure should

be selected according to the purpose of the operations such as spatial query or visualization.

After the decomposition, all of the operations are performed through the selected data

structure by traversing the data structure, finding relevant tiles, and performing operations

on the contents of those tiles. Hence, performance of the operations is really dependent on

the selection of the data structure. During the generation of the tileset, some city objects

may intersect with multiple tiles at the tile borders and unity of city objects may be

compromised. This makes data management difficult across the tiles. After the generation

of the tileset, tileset may need to be updated. Adding new contents to the tiles may exceed

tile size threshold and boundaries of the new contents may intersect multiple tiles. For

performant update operations, these operations must be handled by updating only affected

tiles without re-generating the whole tileset. Decomposition of the 3D geospatial data into

smaller tiles is done based on a tile size threshold. Reducing the tile size increases the number

of tiles. Since the increase in the number of tiles increases the number of HTTP requests for

fetching tiles from the server and overall network usage thus decreases performance. On the

other hand, increasing tile size increases the amount of the data to be streamed and degrades

the performance. Hence there is a trade-off while determining the tile size.

30

All of the problems mentioned so far are tackled and solved in this chapter by

designing and developing a web framework using current 3D geospatial standards. The

components of the framework developed as a SaaS (Software as a Service) tool. The

developed tool consists of two RESTful web services. One service is responsible for the

generation of 3D tileset from a 3D geospatial data resource, and the other service is

responsible for display of the generated 3D tileset. Both of the services are also support 2.5D

vector terrain data as well for tiling and visualizing along with 3DCMs. While developing

services, the 3D Tiles standard is also implemented in order to guarantee interoperability of

the developed framework with other software components.

2.2. Related Work

In this section, 13 academic works and 6 software components about the tiling of 3D

geospatial data have been investigated in the terms of tiling scheme, tile size, object integrity,

update of the tileset and implementation of the 3D standards. These works and their

limitations are explained in more detail below. Also, summary of the investigated works can

be found in Table 2 and summary of the investigated components can be found in Table 3.

Gesquiere and Manin (2012) developed a client-server architecture for visualizing

CityGML data on the web. They parsed the CityGML file using C++ library libCityGML

and converted CityGML data into several regular tiles (Figure 14). Extracted geometry and

semantic information of the city objects stored in the JSON files on the server. Tiles have

been fetched and visualized on the client’s browser based on camera parameters using

WebGL. This work uses regular tiling without a hierarchy. 3DCMs have been converted into

rectangular shaped tiles. The major drawback of these methods is that the distribution of

buildings in 3DCMs is heterogeneous; hence, in some areas, there are much more city

objects than others and the regular tiling approach is lack hierarchical subdivision, hence,

does not consider density of objects in the city and creates heterogeneous size of tiles. The

lack of the hierarchy obscures taking the advantage of the scene graphs for optimizing

filtering and mapping steps of the visualization pipeline. Since in the regular tiling each tile

is in the same level, visibility checks must be done for each city object in each tile. Reducing

the number of the visibility checks for frustum culling, is not possible in this regular tileset.

The other drawback of regular tiling is that objects may intersect with multiple tiles on the

31

tile borders and since the unity of a building can be compromised, this makes object

management difficult between tiles. The tiling process is performed as offline mode on a

desktop. After the generation of the tileset, tiles are visualized in online mode. Additionally,

any of the web-based 3D standards are not implemented and that makes interoperability of

the work rather limited.

 Figure 14. Regular tiling of the CityGML dataset (Gesquiere and Manin, 2012)

Prandi et al. (2013) developed a smart city platform and deployed various smart city

services which require tiling. They use regular tiling and the tiling process is not web-based

as Gesquiere and Manin (2012). Hence their work has the same limitations as Gesquiere

and Manin (2012). Visualization pipeline is not optimized well because of the lack of the

hierarchy between tiles and there is no solution about determination of the tile size or

preserving the object integrity.

Chaturvedi et al (2015) developed a web-based 3D client for 3DCityDB in order to

visualize CityGML data in the browser. In this work, a regular tiling method has been

implemented in order to visualize large scale CityGML data progressively (Figure 15).

Visualization is done using Cesium.js. 3DCityDB is not a web component and needs to be

installed on a desktop. Hence, Chaturvedi et al (2015) has the same limitations with previous

works. Buildings intersected with multiple tiles can be seen in Figure 7 and how the integrity

of these objects can be preserved is not addressed. Same is true for tile size, updating the

tileset . Additionally none of the 3D standards has been implemented.

In his MSc. Thesis Willenborg (2015) converted CityGML geometry to voxel

representation and made simulation of explosions in urban space. Simulation results were

stored in the PostgreSQL database using 3DCityDB and results visualized in the browser

32

using Web Map Client of the 3DCityDB. Hence, this work has the exact same limitations as

Chaturvedi et al (2015).

Figure 15. Regular tiles can be seen in the web map client of 3DCityDB

Kilsedar et al (2019) visualized 3DCM on the web using 3DCityDB and the web-map

client of 3DCityDB. They developed a component called shp2city in order to convert 3D

data in the Esri Shapefile format to CityGML. Then, they processed CityGML data using

3DCityDB and extracted geometry visualized using the web-map client of 3DCityDB.

Gaillard et al. (2015) developed a framework for visualizing 3DCMs on the web. The

CityGML file has been converted into JSON and the whole dataset is also decomposed into

several fixed sized regular tiles. Then progressive visualization is accomplished using

Three.js library. They developed a rendering strategy based on the regular data structure

(Figure 8). Based on the camera parameters, tiles have been rendered in different LODs.

The tile that consists of point of view (POW) rendered with high detailed buildings and DTM

(red tile), the neighbour tiles are rendered with low detailed buildings and DTM (red tiles

with green buildings) and neighbour of the neighbour tiles are rendered without buildings

and only includes DTM. This work has the limitations of the regular tiling mentioned for

33

previous works above. Buildings intersected with multiple tiles can be seen in Figure 16.

Additionally, the proposed rendering strategy works for only with regular tiling. It is difficult

to implement this rendering strategy with hierarchical data structures. Because finding

adjacent tiles is more difficult and there may be too many adjacent tiles in hierarchical data

structures.

Figure 16. Rendering Strategy for Progressive Visualization (Gaillerd et al., 2015)

Krämer and Gutbell (2015) developed 3D geospatial applications and tested WebGL

frameworks such as Three.js, Cesium.js and X3DOM. They converted CityGML data into

X3D and tiled CityGML into several rectangular tiles. They developed a simple streaming

algorithm and loaded tiles into browser memory on demand based on camera parameters

(Figure 17). This work also suffers limitations of the regular tiling. The proposed streaming

algorithm works only for regular tiling. Hierarchical data structures are difficult to

implement with this streaming algorithm. Additionally, any of the 3D standards is not

implemented in this work.

34

Figure 17. Streaming algorithm loads additional tiles and removes that are not
visible based on camera position (Krämer and Gutbell, 2015).

With the arrival of the 3D standards, researchers also tried to solve tiling and

displaying large scale 3D geospatial data by implementing 3D standards in order to achieve

interoperability.

Gutbell et al (2016) developed a framework for server-based rendering of 3DCMs

using 3D Portrayal Service Standard. Unity game engine and Blender 3D modelling software

in order to visualize rendered images on the client, both of the software are desktop

applications which require additional software installation on desktop. Since this work uses

server-based rendering, every interaction on the client requires re-rendering the scene and

fetching the new rendered image from the server which increases overall network usage and

causes latency on the client.

Klimke (2019) developed a framework for web-based provisioning and application of

large-scale virtual 3DCMs. They used 3D Portrayal Service Standard for server-based

rendering of the framework. Since these studies use server-based rendering, every interaction

on the client requires re-rendering the scene and fetching the new rendered image from the

server which increases overall network usage and causes latency on the client.

Koukofikis et al (2018) developed prototype implementations for interoperable

visualization of 3DCMs using 3D Portrayal Service Standard. They tested and validated

interoperability of the 3D Portrayal Service Standard using 3D Tiles and I3S streaming

standards in urban-centric use cases using CityGML data. For tiling 3DCMs they used

commercial software components from Cesium ion, ESRI and FME. They used different

software components which did not communicate with each other, hence requiring a lot of

35

user interaction during the workflow. Additionally, software components are commercial

and not web based except Cesium ion.

Gaillard et al (2020) presented a new method for visualization and personalization of

3DCMs which supports multi-scale resolution of 3DCMs using 3D Tiles standard. The

3DCM has been tiled in the pre-processing step according to 3D Tiles standard and the

generated tileset has been stored in a relational PostgreSQL database. Based on the user

defined rules on the client, the scene graph is generated on-the-fly on the server and fetched

to the client. The major drawback of the proposed method was that even small updates on

the 3DCM or ruleset requires the re-generation of the whole scene graph and re-generation

of the tileset. Another drawback of this study was the tiling method. The tiling process and

generation of the hierarchical tileset has been done using road-network. The buildings

adjacent to the main roads are placed in the higher tiles in the hierarchical tree while

buildings adjacent to the side roads are placed in the lower tiles. This tiling method does not

represent the size of the data. Hence, this situation can lead to tiles in heterogeneous file

sizes. A more precise tiling method which represents data size accurately based on the actual

size of the data must be implemented in order to balance tile sizes.

Lu et al (2020) has visualized real-time large-scale weather data using 3D Tiles

streaming standard. The point-based weather data has been tiled using octree which is a

hierarchical data structure and visualized tiles using Cesium.js. This study only supports

tiling and visualization of point clouds, not other types of the 3D geospatial data.

Jaillot et al (2020) has visualized time-dynamic data along with 3DCMs on the web

by extending 3D Tiles standard. The 3DCM has been tiled using py3dtiles open-source

software component. This component is a python library in order to convert 3DCMs in the

CityGML format to 3D Tiles. The drawback is that py3dtiles is not a web-based component.

A summary of the related work can be found in Table 2.

36

Table 2. Summary of the related Works

Related Work Tiling
Scheme

Rendering Object
Integrity

Implementation of
Standards

Gesquiere and
Manin (2012)

Regular Client No No

Prandi et al. (2013) Regular Client No No

Chaturvedi et al
(2015)

Regular Client No No

Willenborg (2015) Regular Client No No

Gaillard et al.
(2015)

Regular Client No No

Krämer and Gutbell
(2015)

Regular Client No No

Gutbell et al (2016) - Server Yes WVS

Koukofikis et al
(2018)

Hierarchical Client Yes I3S, 3D Tiles, 3DPS

Kilsedar et al (2019) Regular Client No No

Klimke (2019) Hierarchical Server Yes 3DPS

Gaillard et al (2020) Hierarchical Client Yes 3D Tiles

Lu et al (2020) Hierarchical Client Yes 3D Tiles

Jaillot et al (2020) Hierarchical Client Yes 3D Tiles

When we look at the software components for tiling and visualizing 3DCMs on the

web, there is no web-based solution as open-source software components. obj23dtiles is an

open source Node.js module in order to convert 3d data to 3D Tiles. obj23dtiles (URL-17)

is based on another open source Node.js module obj2gltf which has been developed by

Cesium. The major drawback of the obj23dtiles is that it does not construct a hierarchy from

data, hence does not implement a tiling method. It only converts the whole 3DCM in the obj

format to b3dm format. Another open source Node.js component is citygml-to-3dtiles (URL-

18) which has the same drawback as obj23dtiles. It only converts CityGML data to b3dm

format without implementing a tiling method. The most mature open-source component is

37

py3dtiles which converts CityGML data to 3D Tiles by tiling data and constructing a

hierarchical tileset from it. Py3dtiles is not a web-based solution and must be installed as a

standalone software component. At the time of writing this thesis it supports only glTF 1.0

hence it cannot handle glTF 2.0 3D models. FME, VirtualCityPublisher and Cesium ion are

commercial software components for tiling 3DCMs according to 3D Tiles. FME has a 3D

Tiles writer that tiles 3D geospatial data for generation of the hierarchy, it uses object count

as a parameter. Each city object has a different number of vertices and indices hence, each

city object differs in size. Tiling, based on object count causes heterogenous tile sizes. A

more precise tiling method which represents data size accurately such as vertex count and

index count must be implemented in order to decompose data more efficiently. A summary

of the capabilities of the software components can be found in Table 3.

Table 3. Summary of the software components.

Software
Components

Type Licence Hierarchical
Tiling

Support for
Updating
the tileset

Support for
3D
Standards

FME Desktop Commercial Yes No 3D Tiles

Cesium ion Web-
Based

Commercial Yes No 3D Tiles

Virtual City
Publisher

Web-
Based

Commercial Yes No 3D Tiles

py3dtiles Desktop Open
Source

Yes No 3D Tiles

obj23dtiles Desktop Open
Source

No No 3D Tiles

citygmlto3dtiles Desktop Open
Source

No No 3D Tiles

When the current studies in the literature and existing software components are

examined, some limitations are observed. First, most of the works in the literature uses

regular tiling without constructing a hierarchy which makes it impossible to optimize

filtering and mapping steps by imposing scene graphs. Additionally decomposing a whole

dataset to prefixed tiles causes compromising object integrity at the tile borders. None of the

38

works has investigated how this problem can be solved. Another important limitation is that

none of the works or components so far support update of the generated tileset without re-

generation of the tileset. Most of the proposed works require user intervention at some point

in the proposed work flows hence, most of the proposed solutions are not fully automated

which limits the reusability of the proposed methods. Additionally, there is no fully

automated web-based open-source solution for tiling and visualizing 3D geospatial data.

These limitations have been attempted to be eliminated by proposing the new methods which

are described in the following sections of this chapter.

2.3. Methodology

2.3.1. Decomposition of the 3D Geospatial Data

2.3.1.1. Determination of the Tile Size

Tile size determines the amount of the data to be transmitted from server to client for

a tile and directly affects the render quality. A client should be able to render and display the

contents of a tile without any lag and without degrading the rendering performance.

Rendering performance is measured as frame per second (fps) which is the number of

rendered images per second. In the game industry and computer graphics 60fps is accepted

as “good” rendering performance and 60 fps value is selected as the minimum acceptable

rendering performance while determining the tile size. Since rendering is done on the client

in our application, rendering performance is highly dependent on the client’s hardware. In

order to establish mapping between rendering performance and the tile size, data threshold

tests are performed using a computer that has a low-end GPU. The reason for choosing a

computer with a low-end GPU is to guarantee the 60fps even with such computers. Table 3

shows the specs of the test machine.

Table 4. System Specifications of the Test Machine

Intel i5 1.8Mhz Turbo Boost CPU

4GB DDR3 RAM

Intel HD Graphics 4000 GPU

39

The tests started with a single LOD1 block model and fps is monitored at runtime.

Data density is increased by adding new detailed city objects. With addition of the new

vertices and indices by adding new objects fps started to drop. When the data reached 180

kb fps started to drop to under 60 fps while rotating objects. Hence, 180 kb is determined as

the tile size threshold. Since a float value is 4 bytes, the total size of an object is calculated

based on the vertex and index counts by using the following formula 2.1. “SoV” stands for

size of the vertices and “v” stands for vertex count.

𝑆𝑜𝑉 = 𝑣 ∗ 3 ∗ 4 (2.1)

Since an index value is represented as 2 bytes integer value, total size of the indices

has been calculated using the following formula 2.2. “SoI” stands for size of the indices and

“i” stands for index count.

𝑆𝑜𝐼 = 𝑖 ∗ 3 ∗ 2 (2.2)

Since vertex normals are stored for each vertex as float x, y, z values, vertex size

multiplied by 2 in the formula 2.3 to consider size of the vertex normals. Thus tolal size of

the data “T” is calculated as in the following formula (2.3)

𝑇 = 2 ∗ 𝑆𝑜𝑉 + 𝑆𝑜𝐼 (2.3)

2.3.1.2. R-Tree Decomposition

R-Tree is based on recursive decomposition of data into two branches at each level

with respect to a “tile size” threshold. That is, the decomposition of the nodes continues until

each node complies with the threshold. Spatial coherence (3D Tiles, 2018) the enforcement

that the content for child tiles is completely inside the parent's bounding volume must be

incorporated into tiling procedure. One way of ensuring spatial coherence would be to use

bounding rectangles and bounding volumes for 2D and 3D respectively.

R-Trees can be constructed by either bottom-up or top-down methods. The top-down

method starts with decomposing the root into two nodes first. These nodes contain farthest

objects to be tiled. A way of computing the farthest objects is explained in Guttman (1984).

40

By “bounding rectangle enlargement” for 2D data and “bounding volume enlargement” for

3D data, new objects to be included in either of the two tiles are computed. The tile with the

minimum area or volume when the new object is enclosed is the right tile to include the new

object.

A top-down R-Tree tiling has been implemented in this thesis. And the “tile size

threshold” was set to “180kb”. Then nodes are populated with new objects via bounding

volume enlargement. After all the remaining objects added to these two nodes, the threshold

is checked; if it is exceeded then the node is subdivided into two nodes. This routine repeats

itself until all the nodes comply with the threshold. Thus, 3D geospatial data is decomposed

into a hierarchical data structure (Figure 18). Pseudo code for the construction of the R-Tree

can be found in Figure 19.

Figure 18. 3D geospatial data decomposed to R-Tree structure

41

Figure 19. Pseudo code for R-Tree construction

42

During the creation of the R-Tree, bounding boxes of the nodes are updated with the

bounding box of the features that were added to these nodes. Since bounding boxes of the

nodes can overlap each other, object integrity is preserved (Figure 20).

Figure 20. Tile borders overlap and features are always completely inside of a node.

2.3.1.3. Adaptive QuadTree Decomposition

QuadTree is based on recursive decomposition of data into four equal branches at each

level with respect to a “tile size” threshold. That is, the decomposition of the nodes continues

until each node complies with the threshold. QuadTree construction starts with decomposing

the root node into four equal sized children. Then features are added to the child nodes and

threshold is checked for each one of four child nodes. If any of the child nodes exceeds the

threshold, it is decomposed to four equal child nodes. This process continues recursively

until each node complies with the threshold.

For QuadTree construction “tile size threshold” is set as “180kb” as in the R-Tree

decomposition. If the 3D model to be tiled exceeds the 180kb then it is decomposed into

four nodes. Then nodes are populated with new objects. After all the remaining objects added

to these four nodes, the threshold is checked; if it is exceeded then the node is subdivided

into four nodes. Thus, 3D geospatial data is decomposed and converted into hierarchical data

structure (Figure 21).

43

 Figure 21. QuadTree decomposition of the 3D geospatial data.

In QuadTree, nodes are decomposed into four pre-fixed rectangular or square tiles.

Tile borders are not calculated dynamically as in the R-Trees while adding new objects to

the nodes. Hence, some objects may intersect multiple tiles at tile borders. In order to prevent

object integrity, unlike as in the traditional quadtrees, intersection volume is calculated for

each tile that object intersects. Then the object is added to the tile that has the intersection

volume the most and the borders of that tile is updated adaptively to contain the newly added

object (Figure 22). Construction of the Adaptive QuadTree is shown in Figure 23.

Figure 22. Updating tile borders in order to preserve object integrity.

44

Figure 23. Pseudo code for Adaptive QuadTree construction

2.3.2. Updating 3D Tileset

Updating tileset means adding new features to relevant nodes or removing existing

features from nodes in the data structure. In order to update without re-construction of the

tileset, two main operations are performed:

• Traverse data structure and find affected nodes

• Add features to these nodes or remove features from these nodes

While these operations are performed, first, the tile size threshold must be checked and

if it exceeds relevant nodes must be decomposed to new child nodes. Then bounding boxes

of the affected nodes must be re-calculated. For updating R-Tree and Adaptive Quadree,

45

although these general steps are the same, there are minor differences between these two

data structures in the implementation.

2.3.2.1. Adaptive New Features in R-Tree

For adding a feature to a node, first, data structure is traversed from top to bottom and

leaf nodes are found. Then it is decided which leaf node the feature is added based on

minimum volume enlargement value. Minimum volume enlargement value is calculated

between the feature to be added and the leaf nodes. Then, the feature is added to the node

that requires minimum volume enlargement value. Figure 24 shows the pseudo code for

adding new features in R-Tree.

 Figure 24. Pseudo code for adding new feature in R-Tree

2.3.2.2. Adding New Features in Adaptive QuadTree

For adding a feature to a node, first, data structure is traversed from top to bottom and

the relevant node is found. Then the feature added to this node and tile size threshold is

checked. If it is exceeded the relevant node is decomposed to four child nodes. Then features

of the relevant node distributed to child nodes. Figure 25 shows pseudo code for adding the

new feature in Adaptive QuadTree.

46

 Figure 25. Pseudo code for adding a new feature in Adaptive

QuadTree

2.3.2.3. Removing Features in R-Tree and Adaptive QuadTree

Removing a feature is algorithmically the same for both R-Tree and Adaptive

QuadTree. To remove a feature from a Node, data structure is traversed and the relevant

feature is found in the node hierarchy. Then the feature is removed from that node. After the

removing process, the tile size threshold is checked and if possible, the relevant node is

merged with its siblings to parent. Figure 26 shows the pseudo code for removing a feature.

Figure 26. Pseudo code for removing a feature in R-Tree and
Adaptive QuadTree

47

2.3.3. Implementation of the 3D Tiles Specification

In 3D Tiles, hierarchical information and metadata about tiles are encoded to a JSON

file called “tileset.json”. Thus, the tileset.json file is consumed by the client implementation

at the runtime and the scene graph is derived for the visualization pipeline of the application.

To generate tileset.json file hierarchical information that is derived from decomposition is

encoded into a JSON file (Figure 27).

Figure 27. A part of a tileset.json file that describes 3 levels hierarchy

According to 3D Tiles specification, tile definition includes a “Bounding Volume”, a

“Refinement”, a “Geometric Error” and a “Content” in 3D Tiles. Bounding Volume is a 3D

axis aligned minimum bounding box that encloses the tile. Refinement is the type of the

refinement method that determines the refinement process. Geometric Error is a metric in

meters that is used by the client engine to decide the refinement process. Content is a little-

endian binary blob that contains the scene data which is a subset of the scene graph and

encoded into a file with extension ”b3dm”. Content, also contains an “uri” that points the

48

path of the scene graph data file and a bounding volume. Figure 28 shows the UML class

diagram for a tileset in 3D Tiles.

Figure 28. UML Class Diagram for A Tileset in 3D Tiles

2.3.3.1. Generation of the Tile Content

Content of a tile refers to both geometric and attribute data of the features of the tile.

In 3D Tiles, contents of a tile are stored in a format called B3DM (Batched 3D Model). In

b3dm format, geometry of the features are stored as glTF, non-spatial attributes are stored

in “Feature Table” and “Batch Table”. glTF, feature table and batch table together form the

b3dm file thus, both spatial and non-spatial properties of the features are represented in the

b3dm file.

In the feature table, semantics which are “BATCH LENGTH” and “RTC_CENTER”

are stored. Batch length is the number of features in the tile and rtc_center is the coordinates

of the center of the tile in the earth centered earth fixed EPSG 4979 coordinate system. In

the batch table, non-spatial attributes of the features are stored along with feature ids.

The reason for the additional tables to store the contents of a tile is that 3D formats

which have been investigated in Chapter 1 such as glTF and X3D focus on storing graphical

elements which are consumed by WebGL; they do not support non-spatial attribute data.

49

While decomposing 3D geospatial data into tiles, for each tile, contents of a tile have

been written into a single b3dm file. By batching multiple 3D models into a single file,

multiple 3D models can be transmitted with a single request and in the visualization pipeline,

they can be rendered with the least number of WebGL draw calls.

To create b3dm files for tiles, vertices, indices, and vertex normals are encoded as

glTF, then, relevant feature tables and batch tables are encoded.

2.3.3.1.1. Triangulation of the 3D Polygon Surfaces

WebGL uses points, lines and triangles as geometric primitives in order to render

objects. Thus, 3D polygonal surfaces of the objects in a 3D geospatial data must be

triangulated to display them via WebGL. For this purpose, a 3D polygon triangulation

algorithm Ear-Clipping is implemented using earcut4j open-source java library (Figure 29).

Figure 29. 3D polygon surfaces (left), triangulated polygons
(right)

2.3.3.1.2. Calculation of Vertex Normals

Vertex normals are needed in the rendering step for lightning and calculation of the

colours of the pixels. Without vertex normals individual surfaces of the 3D models can not

be distinguished (Figure 30).

50

Figure 30. Rendering without vertex normals (left) and with vertex normals (right)

Vertex normals are calculated using surface normals. Surface normal is a unit vector

that is perpendicular to the surface. Surface normals are calculated using vertex coordinates

and vector math. After calculation of surface normal for each triangle, vertex normals are

calculated as the sum of surface normals which the vertices belong to. After calculation of

vertex normals, vertex normals have been added to the b3dm file for each tile.

2.3.3.1.3. Clamping to the Terrain

3D geospatial data cannot be considered independent of the terrain, for a realistic

visualization, buildings must be placed on the digital terrain models (DTM). Most of the 3D

geospatial dataset is not aligned to a digital terrain model or have pre-calculated heights

according to a different DTM. In such situations height differences may occur between 3D

city models and DTMs hence, heights of the city objects must be aligned according to the

DTM (Figure 31).

51

Figure 31. Buildings over the terrain (top), buildings clamped to the terrain (bottom)

In order to clamp buildings to the terrain, first, building footprints intersected with

DTM then, an offset along the z axis is applied until the min z value of building footprint

matches the min z value of the intersected pixels. Thus, buildings have been clamped to

terrain during the tiling.

2.3.3.2. Calculation of the Geometric Error for A Tile

Client implementation will need to determine if a tile is sufficiently detailed for

rendering or it must be refined by its children. This decision is made using the geometric

error value of the tile. For a tile, the geometric error is used to determine whether the children

of the tile should be rendered. At runtime client rendering engines calculate space screen

error (SSE) using the geometric error value of the tile according to the following formula

(2.4). If the SSE exceeds a pre-defined threshold value, children of the tile are rendered;

hence, geometry is refined with a higher level of detail.

There is no formula for calculation of the geometric error value in 3D Tiles

specification, hence, a formula has been produced and tested with our datasets. Root tile that

52

has the most simplified geometry, should have the maximum geometric error value, then this

value should gradually decrease in each level of the hierarchy and should be zero at leaf tiles

that have the highest level of detail. According to this logic, the following formula has been

developed to calculate the geometric error value of the tiles. For a given tile Ti, geometric

error of Ti,

𝐺! = 𝐺!"# − 𝐺/𝐿 (2.4)

𝐺! stands for geometric error of a tile, G stands for geometric error of the root tile and

L stands for the level of the tile. Based on the 𝐺! value, at runtime SSE value can bu

calculated as following formula (2.5).

SSE =(𝐺!x screenHeight) / (tileDistance x 2 x tan(fovy/2)) (2.5)

“screenHeight” stands for the height of the screen in pixels, “tileDistance” stands for

the distance of the tile from eye point, “fovy” is the vertical fov angle of the viewing frustum

in radians. Relationship between geometric error and space screen error is shown in Figure

32.

Figure 32. Relationship between geometric error and space screen error (URL-19).

53

2.3.3.3. Refinement Method

There are two different refinement methods in 3D Tiles. Supported refinement

methods are replacement and additive. In the replacement method, child tile is rendered and

the parent is no longer rendered. In the additive method, child tile is rendered in addition to

the parent. Root tile (blue) and its child (pink) is rendered as “additive” as shown in Figure

33.

Figure 33. A tile and its child rendered using additive method

2.3.3.4. Display of the Tileset on the Browser

For a 3D tileset that is decomposed according to 3D Tiles, at first, the tileset.json file

is loaded by the client in order to extract the scene graph of the tileset. Utilizing the scene

graph, intersection between the bounding volume of the root tile and view frustum is tested.

If the bounding volume of the root and view frustum intersects, content of the root is

considered for rendering. Then the bounding volumes of the childs are tested against the

view frustum. Whichever child intersect, their b3dm files are fetched and loaded from the

server (Figure 34).

54

 Figure 34. View Frustum and tiles (URL-19)

When the user zooms in or zooms out to the tileset, since the distance between camera

and the tile changes, a new SSE value is calculated at runtime using the formula (2.2). If

SSE exceeds a pre-defined value, then the next level of tiles is considered for rendering.

Then, next level childs are tested against the current view frustum and only intersected ones

are loaded and rendered according to the refinement method (Figure 35).

55

 Figure 35. View frustum and tiles (URL-19)

Above mentioned rendering strategy based on scene graph, geometric error and SSE

value work well with all hierarchical data structures contrary to rendering strategy of

Gaillard et al. (2015) and (Krämer and Gutbell, 2015).

2.3.3.5. Handling of Varying Level of Details (LODs)

For a multi LOD dataset, a multi-representation refinement method has been

developed. While interacting with a 3D tileset, if the user zooms in to a tile, while child tile

is rendered as in the previous topic, resolution of the parent tile is increased, and a higher

level of detail is rendered in place of the current parent. Such an approach cannot be

implemented with the current status of the 3D Tiles standard at the time of writing the thesis.

Because, in tileset.json file content of a tile is pointed out using a single uri. Multiple LoD

of a 3D object cannot be stored in a single b3dm file. Hence, in order to implement the

proposed approach, the 3D Tiles standard has been extended. Up to 4 varying numbers of

LODs are supported in order to support 4 different LODs of the CityGML. For each LOD

of a content in a tile, separate uri’s are used to point to separate b3dm files (Figure 36).

56

Figure 36. Displaying varying LODs according to the distance of the camera

At first, LOD1 is rendered for a tile(Figure 36, left), if camera zooms in to the tile,

child is rendered as LOD1 and also parent is refined as LOD2 (Figure 36, middle), if camera

goes on to zoom in to child, new level is rendered as LOD1 and child is refined as LOD2.

Extended tileset.json file is shown in Figure 37.

 Figure 37. Generated tileset.json file for a multi LOD dataset

2.3.4. Development of the RESTful Web Services

Proposed solutions have been implemented through RESTful web services. Client and

server communicate with each other through web services developed by using Java Jersey

57

rest framework. The system overview can be seen in Figure 38. Deployment of the

application is done using Amazon Lambda Serverless. Serverless stands for not needing

your own servers to execute the application on a server and Amazon Lambda is serverless

platform provided by Amazon Web Services (AWS). End users can upload 3D geospatial

data in the CityGML format to the server. In the server, the uploaded file is stored in an

Amazon S3 bucket. S3 stands for simple storage service and bucket is a data container for

uploaded objects in Amazon S3. Amazon lambda functions have been used to process the

uploaded file in S3 bucket. Using the citygml4j open-source java library CityGML file is

parsed and using the earcut4j open source java library 3D polygons of the city objects are

triangulated. Then, using our 3D tilers based on R-Tree and Adaptive QuadTree, the 3D

tileset is generated in accordance with the OGC 3D Tiles standard. Then, the end user can

download the 3D tileset to its local machine or display the generated tileset using the client

of the application. For developing the client, Cesium.js, HTML5, WebGL and Prime Faces

technologies have been used. Cesium.js has been used to render 3D tileset and Prime Faces

which is an open-source java server pages library has been used to develop the user interface

of the client.

58

Figure 38. System Overview

2.3.5. Tiling of the Terrain

2.3.5.1. Tile Map Service (TMS) Specification

TMS is a specification for serving maps as tiles on the web that is developed by the

Open Source Geospatial Foundation (OSGEO). TMS is also the predecessor of another

protocol called Web Map Tiles Service which is developed and published by OGC (TMS,

2010). It aims to provide interoperability between web map applications by standardizing,

requesting, and accessing the tiles.

TMS provides a layout based on quadtree for streaming vector data in our case terrain.

A quadtree is a hierarchical tree data structure in which each internal node has exactly four

children which are exactly equal in size.

TMS uses the z/x/y tile naming scheme for naming quadtree tiles. Z is the zoom level,

X is the column number and Y is the row number (Figure 39). It is worth mentioning that

59

the Y coordinates start from bottom left in TMS unlike many vector tiles such as Google

Maps, Bing and OSM which their Y coordinates start from top left.

Figure 39. TileMap Diagram according to TMS (TMS, 2010)

2.3.5.2. Quantized Mesh Specification

Quantized-Mesh is a specification and format for streaming massive vector terrain

datasets for 3D visualization (URL-20). Quantized-Mesh is based on TMS global geodetic

60

profile. According to this profile coordinate system must be EPSG 4326. First 3 levels of

tiles can be seen in Figure 40. Note that there are 2 root tiles at level 0.

Figure 40. First 3 levels of tiles in the quantized-mesh specification

A terrain tileset in quantized-mesh-1.0 format is a simple multi-resolution quadtree

pyramid of heightmaps (URL-20). A JSON file that consists of metadata about this quadtree

terrain tileset that is called “layer.json” must be in the root folder of the tileset on the server.

Context of the file can be found in Figure 41.

 Figure 41. layer.json file for our terrain dataset.

61

It is worth mentioning the important information in the layer.json file. “available” key

contains values of for each tile zoom level, a list of tile ranges is included that defines the

tiles that are available in this tileset. Each tile range is defined by x and y TMS coordinates

that bound a range of tiles. In Figure 41, only the first two levels are included in order to

minimize the figure. “bounds” is the maximum extent of available tiles. “projection”

contains coordinate system information. If it is not defined, projection is EPSG:4326 by

default. The other option for projection in quantized mesh specification is EPSG:3857 which

is used by Google Maps. “scheme” is the tile naming scheme. Available values are “tms” or

“slippymap”. The difference between these options Y coordinate numbers which was

explained more detailed in the previous section.

2.3.5.3. Generation of TIN Pyramid

The developed tiling algorithm takes a regular raster DTM in geotiff format and creates

a TIN pyramid from it. First, contour lines are generated from given raster input and points

of the contours are extracted. In order to generate multiple level of details, data must be tiled

according to a data structure in this case it is quadtree.

Contours may intersect with boundaries of multiple tiles. In such a case, to ensure data

coherence new points are created as a result of intersection of contour and tile border. These

points are referred to as “steiner points” in the literature. After the generation of the tiles, for

lower levels of tiles, data has been simplified in order to control the data size threshold which

is 50kb for terrains.

2.3.5.4. Simplification Process

For simplification of contours Ramer Douglas Peucker (RDP) algorithm has been

used. RDP algorithm works recursively. RDP divides a line to sub segments and removes

some points until no point is left to remove. A line simplification using RDP is shown step

by step from top to bottom in Figure 42. First, start (A) and end points (B) of the lines are

marked as kept and a straight line between A and B points is constructed. The point that has

the maximum perpendicular distance from this line is selected (Point C in Figure 42). Then

two line segments are constructed using this point. One segment is from A to C and the other

one is C to B. The point that has the maximum perpendicular distance from these new lines

62

are found (D and E points respectively in Figure 42). Then again new line segments are

constructed using D and E points and points that have the lower distance value than a

predefined threshold often called as epsilon in literature are removed from the lines (red

points in Figure 42). This process repeats itself until there is no point to remove in the lines.

Figure 42. Step by step RDP Line Simplification. Green points are selected as points to
 keep and red points are removed during the simplification process.

A varying epsilon value has been used for generating varying levels of details. Big

vector tile vendors such as Mapbox and Swiss Federal Office of Topography recommend

that tiles should not exceed 50KB in size which is approximately equal to 4000 vertices in

the terms of data density. To keep data size under 50KB tiles, the starting epsilon value has

been used as 8. For a lower level, area multiplied by 4 which means data density

approximately multiplied by 4. In order to not exceed 4000 vertices, the epsilon value is

63

multiplied by 4 for the previous level of tile. In this way, different levels of details have been

generated using varying epsilon values which are controlled by the developed tiling

algorithm itself. After the generation of multiple levels of details, these lines are triangulated

by using a Delaunay triangulation algorithm and TINs are generated for each tile.

2.3.5.5. Implementation of the Quantized Mesh Specification

Data format for terrain tiles is basically a little endian binary blob in quantized-mesh

specification and data files have .terrain extension. The header section of the terrain file

should contain the following information.

· Center coordinates of the tile in the ECEF coordinate system

· Minimum and maximum heights in the area covered by tile

· Coordinates and radius of tile’s bounding sphere in the ECEF coordinate system

· Coordinates of the horizon occlusion point in the ECEF coordinate system.

After the header information, there is the geometric information about vertices of the

TINs. vertex count and coordinates of the vertices are stored in this section of the terrain file.

In order to implement the quantized mesh, these values must be calculated for each tile.

2.3.5.5.1. Calculation of the Horizon Occlusion Point

In the virtual globe-based engines like Cesium and Google Earth, view frustum culling

is not enough for determining invisible objects. In the following image (Figure 43), view

frustum is represented as thick white lines. The green points are visible because they are in

the viewing frustum, but red points are outside of the frustum hence they need to be culled.

But although the blue point is in the viewing frustum, it is invisible to the viewer due to the

spherical shape of the earth itself. For culling these “blue points”, a horizon occlusion point

(HOP) is calculated then if the object is below the HOP it is culled otherwise it is rendered.

64

Figure 43. The blue point is invisible to the viewer due to the spherical shape of the earth

(URL-21).

In the run time, Cesium implements horizon culling using pre calculated HOP values.

The calculation of the HOP in this thesis is based on two great blog posts about horizon

culling (URL-21 and URL-22).

65

Figure 44. Computation of Point P, the HOP (URL-22)

In Figure 44, the world is represented as a blue unit sphere and terrain tile is brown

polygon. “O” is the center of the earth and “P” is the HOP and “V” is a point in the terrain

tile. First, all the coordinates are transformed to the ellipsoid-scaled space by multiplying

each coordinate with the inverse of the radius of the WGS84 ellipsoid. X, Y, and Z

components of the radius are as follows.

Rx= 6378137.0

Ry= 6378137.0

Rz= 6356752.3142451793.

After this transform , For each vertex in the tile a HOP value “P” is calculated using

the following formula (2.6)

4𝑂𝑃77777⃗ 4= 1/cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 (2.1)

66

Then the furthest P point from the ellipsoid is selected as the HOP and written to terrain

file as double values.

2.3.5.5.2. Calculation of Vertex Coordinates

In order to improve performance of web applications, it is important to reduce data

size transmitted between server and the client. Vertex Quantization is a geometry

compression technique that compresses data size by normalizing vertex coordinates. In this

way, vertices can be represented with less memory footprints.

In WebGL, floats are stored as 32-bit floating-point numbers which are 4KB in size.

Using quantization, vertex coordinates can be stored as 16-bit unsigned integers which are

2KB in size. Quantized-Mesh specification encourages this technique and vertex coordinates

must be quantized into the 0-32767 range. For quantization, vertex coordinates have been

transformed to 0-32767 range using linear interpolation. Since the center of the tile is stored

in ECEF coordinates, engines like Cesium can decompress vertex coordinates at run time.

Figure 45 shows the Java class that has been used to store terrain data. Observe that since

there are no unsigned types in java vertex coordinates are represented using short type

instead of unsigned integer.

67

 Figure 45. QMesh class used for storing terrain data in quantized mesh format

2.4. Findings and Discussion

2.4.1. Performance Comparison of R-Tree and Adaptive QuadTree

Proposed tiling methods have been tested on two different datasets:

• Kaşüstü (1282 buildings, 10 km2, 20mb)

• Trabzon (56602 buildings, 4685 km2, 1.05gb)

Two data structures have been compared based on construction, addition, deletion, and

kNN (k nearest neighbour) spatial query performances. The Performances of the operations

are measured based on execution time of the algorithms in seconds (Table 5).

68

 Table 5. Performance metrics of the data strucrures

Kaşüstü Dataset Trabzon Dataset

R-Tree Adaptive QuadTree R-Tree Adaptive QuadTree

Construction 420.67s 86.51s 2513.80s 483.57s

Addition 0.83s 0.05s 1.12s 0.09s

Deletion 0.67s 0.04s 0.90s 0.09s

KNN Query 0.61s 1.13s 2.14s 4.18s

Since construction of the data structures requires processing each feature in datasets,

construction times increase linearly with the data size. However, since addition, deletion

and kNN query operations are performed on the only relevant nodes through spatial search,

execution times of these operations do not increase linearly with data size. Although the

Trabzon dataset is 52 times larger than the Kaşüstü dataset in size, addition, deletion and

kNN queries are only approximately 2 times slower than Kaşüstü dataset in Trabzon dataset.

These results show the effectiveness of the addition, deleting and kNN query operations in

the terms of scalability.

When we compare R-Tree and Adaptive QuadTree, for both dataset there is a huge

difference in construction times between R-Tree and Adaptive QuadTree. Generation of R-

Tree is approximately 6 times slower than generation of Adaptive QuadTree. Addition and

deletion operations are faster in Adaptive QuadTree while kNN queries are faster in R-Tree.

Depending on the results in Table 4, if the application uses a static 3D geospatial data and

requires kNN queries, R-Tree must be used as the tiling algorithm. If application requires

dynamic geospatial data with heavy updates Adaptive QuadTree must be used as the tiling

algorithm.

2.4.2. Hierarchical Data Structures or Regular Data Structure

In the related works, 3D geospatial data decomposed to tiles using regular data

structures or hierarchical data structures. However, none of the works explain why regular

data structure was used or why a hierarchical data structure was used.

69

In regular data structure, the extent of the data set is subdivided equal sized rectangular

tiles. Hence, construction of the data structure is fast and easy to implement when it is

compared to hierarchical data structures. The simplicity comes from that there is no check

for tile size threshold and there is no check for integrity of the objects. After the generation

of the tileset, all the tiles are at the same level without a hierarchy. In such a structure,

optimizations based on the hierarchical information can not be implemented. For instance,

each tile must be tested against frustum culling for rendering or for a kNN query, range

calculation must be done for each tile. Another disadvantage of the regular data structure is

heterogeneous tile sizes. Since decomposition is done spatially without considering data

density and distribution of the objects, there may be more objects in some tiles than the

others. Hence, fetching and loading times of the tiles may vary and can not be controlled.

Also, the same is true for rendering. Rendering performance can not be controlled and

rendering times and fps may vary.

In contrast to regular data structure, in hierarchical data structures, data set is

subdivided into tiles based on a tile size threshold. Thus, a hierarchy and parent-child

relationship between tiles is constructed. Hence, construction of the data structure is slower

and more complicated than its regular counterpart. However, this disadvantage comes with

a lot of benefits. In such a hierarchical data structure, many optimizations can be performed.

Using hierarchical information and scene graphs, optimizations can be done for frustum

culling on the visualization pipeline. If the bounding box of a tile is outside the view frustum,

with that information it is also guaranteed that the childs of the tile are outside frustum as

well, hence there is no need to perform visibility checks for the childs. An update operation

can be performed efficiently by traversing the hierarchical tree and finding the relevant tiles

and performing updates on them. However, for the same update operation, every tile had to

be searched in a regular data structure. Another advantage of the hierarchical data structures

are homogenous tile sizes. Since decomposition is done using a tile size threshold, tile sizes,

loading times of the tiles, rendering times of the tiles and fps can be controlled.

2.4.3. Examining the Differences Between the Proposed Methodology and the
Related Works

70

The related work and their differences from the proposed methodology in this thesis

have been given in related work of this chapter. Under this topic, most similar works have

been discussed in more detail.

Gaillard et al. (2015) and Krämer and Gutbell (2015) have used a regular data structure

for tiling the dataset. In the methodology proposed in this thesis, hierarchical data structures,

R-Tree and Adaptive QuadTree have been used. Hence, our work has advantages described

in the previous topic. Gaillard et al. (2015) and Krämer and Gutbell (2015) both developed

a rendering strategy based on the regular data structure. Tiles that contain the camera and

their neighbour tiles are fetched and rendered. The neighbour tiles can be easily found in

regular data structure using row and column numbers of a tile. However, this rendering

strategy is very hard to implement with hierarchical data structures such as in our

methodology. Because neighbour tiles are hard to find in a hierarchical dataset and a tile

may have many neighbour tiles that are inefficient to render at once. Hence their rendering

strategy does not work with other data structures. In contrast, our rendering strategy is based

on hierarchical data structures and works well with all of the other data structures such as

kd-Trees, R-Trees, QuadTrees as long as the data structure is a hierarchical tree.

Additionally, Gaillard et al. (2015) and Krämer and Gutbell (2015) do not implement a 3D

standard such as 3D Tiles and interoperability of the works is limited when it is compared

with ours.

The most similar work to this thesis is Gaillard et al. (2020). In their work, a

hierarchical data structure has been used and the 3D Tiles standard has been implemented.

Instead of using a tile size threshold to create hierarchy between tiles, an interesting approach

has been implemented. Hierarchy has been constructed using the road network. The

buildings adjacent to main roads have been placed in higher tiles in hierarchy while the

buildings not adjacent to main roads have been placed in lower tiles. Such a hierarchy does

not represent data size precisely as in this thesis and heterogenous tile sizes may occur. Data

size and rendering performance are not controllable as in our methodology.

Cesiumion is the most mature software component to generate 3D tileset according to

3D Tiles standard and it is the most similar product to our developed framework. As in our

developed framework, 3D geodata can be uploaded, tiled and visualized using Cesiumion.

The main difference from the developed framework in this thesis is that, when 3D geodata

is updated, re-tiling must be done for the whole dataset. In our framework, a 3D tileset can

be updated without re-generating the whole tileset with update functions such as “insert” and

71

“delete”. For the Trabzon dataset, generating a tileset is 483 second while updating it is 0.09s

(Table 5). There is a huge difference and re-generating the tileset must be avoided as long

as possible. None of the components of work support varying LODs as the developed

framework.

2.4.4. Layer-Based or Object-Based Tiling Scheme

After the generation of the tileset, when we tested the render performance for

displaying tiles, we see that while zooming or rotating render performance drops under 60

fps. The reason was DTM. Rendering a textured DTM is more computationally intensive

than rendering untextured 3D buildings. Since tile size threshold is determined using only

3D objects without considering the terrain, rendering performance drops under 60 fps. In

order to guarantee the 60fps rendering performance, while determining tile size threshold,

terrain also has been considered (Figure 46) and determined as 180KB.

Figure 46. Testing the rendering performance

Above mentioned situation has raised the discussion; tiling should be done as object

based or layer based. For a layer-based tiling, each layer is tiled individually. Each layer

conforms to the tile size threshold and guarantees 60fps individually. Advantage of the layer-

based tiling is that layers can be displayed or hidden individually. The disadvantage is that

when users display multiple layers at once, fps may drop below 60 fps.

72

In object-based tiling, multiple layers are tiled together. Bounding box of a feature is

searched in other layers and all the relevant data that correspond to the bounding box in other

layers are considered for tiling. The advantage is that multiple layers can be displayed

without compromising 60 fps. The disadvantage is that tiling must be done dynamically and

adding new layers requires a re-tiling process.

2.4.5. Order of the Operation During Tiling Process

Operations that affect the tile size and render performance must be performed before

the tiling. Also, some operations are impossible to perform after tiling.

Clamping to the terrain must be done before the tiling operation. Although a modified

model view matrix can be used to adjust heights according to terrain, for a single b3dm file

only a single model view matrix is applied hence, buildings of the tile cannot be adjusted

individually, the same offset value is applied to all the buildings in the tile. Because of this

limitation of 3D Tiles, clamping to the terrain must be performed for each building before

the tiling operation.

Calculation of vertex normals and triangulation operations increases the size of the

geometric data of the features hence, to not to compromise tile size threshold, these

operations must be done before the tiling. Calculation of the vertex normals must be done

before the triangulation. Because after the triangulation, although surface normals do not

change, since the number of surfaces increases, calculation of the vertex normals will be

slower.

2.4.6. High Precision Rendering of the 3D Tileset

In WebGL, coordinates of the vertices are stored as 32-bit single precision floats but

in georeferenced 3D geospatial datasets, coordinates are stored as 64-bit double precision

values. Georeferenced coordinates are larger than seven decimal digits and exceed the limits

of the 32-bit single precision floats. Hence, precision loss occurs in coordinates while

mapping them to WebGL. Because of the precision loss, unwanted jittering effect occurs at

the rendering stage which affects the quality of the rendering.

To overcome precision loss, the center of each tile is stored in the feature table in earth

centred earth fixed (ECEF) coordinate system as RTC values. Coordinates in the tile are

73

transformed to local coordinates which 32-bit single precision is sufficient by translating

them using RTC values. At runtime rendering has been made using translated local

coordinates to avoid the jittering effect.

2.4.7. Review of the 3D Tiles Specification

3D Tiles is designed for efficient streaming and rendering massive geospatial datasets

and most of the concepts borrowed from Computer Graphics. Understanding and

implementing these concepts (Figure 47), requires a steep learning curve for a person that

has a GIS oriented background. Moreover, these concepts are not clear and not defined well

in the standard.

Figure 47. Concepts and Technologies Used in 3D Tiles Standard

There is a “Geometric Error” definition in the standard verbally which is not clear

enough to implement. There is no mathematical definition for it hence, calculation of the

geometric error is not defined. To overcome this issue a formula has been developed to

calculate geometric error which was described in methodology.

Although 3D Tiles specification imposes hierarchical data structures, tile size

threshold is not defined, tile size threshold is defined in this thesis based on rendering

performance in methodology.

74

Knowledge about WebGL is required in order to implement the 3D Tiles standard.

Error warnings about WebGL must be understood in order to solve problems. Some WebGL

errors encountered during the development process were “GL_INVALID_OPERATION:

Insufficient buffer size.”, and GL_INVALID_OPERATION : glDrawElements: range out

of bounds for buffer. The first error was caused due to writing more data than exists into a

buffer for an index array. The second error was caused due to the wrong indexing of the

vertices while creating the index buffer. Debugging and solving these problems are not easy

due to the verbosity of the WebGL. Error messages are not identical to problems and many

other problems would have caused the same error messages.

3D Tiles uses glTF as a 3D model format. glTF is the most efficient format today on

the web but debugging and encoding it is not easy. glTF is a binary format hence not human

readable which makes it difficult to notice errors. Binary data is represented as Base64

encoded text. Here is a part of our geometric data of a tile as Base64 string,

"uri":"data:application/octet-

stream;base64,7mQfQqLZI0IAAAAA22QfQo7ZI0IAAAAAxGQfQpvZI0IAAAAAyWQf

QqDZI0IAAAAAuWQ…". Data is heterogenous, vertices, normals, indices are all in this

string. To be able to decode and read data, it should be known which type of data is between

which bytes in the buffer. Hence this makes it difficult to debug and decode the data when

it is compared to formats such as GeoJSON.

Also, glTF specification dictates 4-byte boundary in order to align data and make data

access efficient. Hence, in order to align data in the buffer according to the 4-byte boundary,

padding must be done in some parts of the buffer. Sizes of the structures in glTF such as

bufferviews and accessors must be a multiple of 4 bytes. While generating the contents,

padding is implemented to guarantee that sizes of were a multiple of 4 byte. Although sizes

of all glTF structures were a multiple of 4 bytes, we still kept getting warning about the 4-

byte boundary on the console of the browser. The reason was that beyond glTF structures,

each index must be a multiple of 4 bytes; however, an indice is encoded as an integer array

that has tree integer elements. Hence, an integer is 2 bytes, an index is 6 bytes in size. 2-byte

padding implemented for each index in the buffer hence, this solved the issue. This situation

is not described in glTF specification clearly and wasted more time than it is worth.

75

2.4.8. Evaluation of the Terrain Tiling and Quantized Mesh Specification

One of the problems encountered during tiling of the terrain was data coherence. Some

triangles intersect with the boundary of two or more different tiles (Figure 48).

Figure 48. Intersection of triangles (Yellow) with tile borders (Green)

This intersection splits triangles and creates additional points (pink points in the figure

38). The split of triangles changes the topology of the TIN and creates new polygons. These

polygons require an additional triangulation process. If these polygons are not handled

properly “cracks” that look like “shark teeth” occur on the tile edges (Figure 49).

76

Figure 49. Cracks on the left and bottom edges of the tile.

Additional triangulation of these polygons at the tile borders is a computationally

expensive process. In order to find intersecting triangles with the tile borders, each triangle

must be tested with tile borders. Hence, finding intersecting triangles is a O(n) process in the

term of time complexity.

In order to avoid this computationally expensive additional triangulation process,

original data has been tiled before triangulation using contours. Then TINs have been

generated by triangulating points of these contours.

While implementing Quantized Mesh specification most of the encountered errors

were due to the encoding of the terrain file format not due to the calculations. Because as in

the 3D Tiles specification, formats are easy to parse, easy to render but hard to encode and

hard to debug.

2.5. Conclusion

In this chapter, the tiling component of the web framework has been developed by

implementing the 3D Tiles standard and Quantized Mesh standard. 3D Tiles have been

implemented and tested using R-Tree and Adaptive QuadTree data structures for 3D

geospatial data. The Quantized Mesh standard has been implemented and tested using

QuadTree data structure. End-users can upload, tile, and display their 3D geospatial data and

2.5D terrain using the developed framework through a browser without any software

77

component installation. Supported formats for 3D geospatial data are OBJ, glTF, CityGML,

glb, b3dm and CityJSON and supported format for terrain is Geotiff.

Performance of the hierarchical data structures are compared with each other using

two different datasets which vary in size. R-Tree performs better in spatial queries while

Adaptive QuadTree performs better in updates and construction.

3D Tiles standard has been extended to support multi-LOD data and multi

representation of 3D data has been achieved and one of the limitations of 3D Tiles has been

eliminated.

One of the limitations of the tiling component is textures. Textures of 3D models are

not supported and not considered in the tiling algorithm. In one of the future works texture

support will be developed.

3D Tiles is designed for client-based rendering. In one of the future works, it will be

extended to support server-based rendering.

Another important future work would be multithread support. Using multi-threaded

programming, tiling processes can parallelize across the multiple cores of the modern

computers and performance would be increased.

3. CHAPTER 3 WEB-BASED 3D ANALYSIS AND QUERY OF 3D

GEOSPATIAL DATA

3.1. Introduction

With the development and increasing popularity of the concepts and technologies such

as smart cities and digital twins, beyond visualization, the need to perform web-based 3D

analysis and simulations on 3D geospatial data has arisen. The true power of GIS is to

analyze geometric and topological properties of features and extract new information from

them.

3D analysis and query capabilities of existing works are quite limited. In most of the

works named as “web-based 3D analysis”, analyses are performed on the desktop as offline,

and results of the analyses integrated to a web application. In such an application only, the

results are visualized and can be queried as online. The major drawback of this type of

application is that the user has to work in multiple environments and with multiple software

components. For an analysis, when a value of a parameter changes, the user has to re-perform

analysis on desktop and pack and send the results to the client for visualization and query.

Additionally, two different software cannot interact with each other automatically. Hence,

most of the time a user intervention is required to complete the remaining steps for the web-

based visualization of the analyzed results. This type of applications cannot be called as true

2D WebGIS applications where all the interactions of the user can be performed on a single

web-based environment and software.

In this chapter, 3D analysis and query components of the framework have been

developed. Thanks to the developed components, users can perform 3D analysis and queries

on 3D geospatial data on a single web-based software and can visualize results. In order to

analyze 3D geospatial data efficiently on the web, a new fast 3D intersection algorithm has

been developed. To be able to visualize results of the analyses, analysis components have

been integrated with the tiling component which was described in the previous chapter.

79

3.2. Related Work

Many existing works entitled as 3D WebGIS were about the visualization of the 3D

analysis on a client application, rather than performing 3D analysis itself online. Common

point of aforementioned works in this paragraph is that although they are named as 3D

WebGIS they do not perform 3D spatial analysis online. Achere et al. (2016) visualized

results of a flood analysis as 3D. In another work entitled as 3D WebGIS Feng et al. (2011)

visualized terrains in 3D. Similarly, Chen et al. (2016) developed a framework for 2D and

3D visualization of geospatial data to manage landslide hazards. Xiaoqing et al (2010)

visualized results of a shortest path analysis in 3D by integrating ArcGIS and Skyline

software. Li et al. (2015) visualized earthquakes on a globe as 3D. Schwerin et al. (2013)

developed a VR application in which you can interact with 3D models. With this tool, users

can search and query, in real time via a virtual reality (VR) environment, segmented 3D

models of multiple resolutions that are linked to attribute data stored in a spatial database

but cannot perform 3D spatial analysis. Pispidikis et al. (2016) developed a web-based tool

to query and visualize CityGML data. Although they mentioned 3D spatial analysis in their

article, which spatial analysis can be performed are not explained and also, results of the

work do not show 3D spatial analysis. They mostly focused on querying the CityGML data

and visualizing queried results.

The most similar works to our proposed methodology are Chaturvedi (2014) and Auer

and Zipf (2018). Chaturvedi developed a web-based tool to perform 3D buffer and 3D

intersect analyses. The drawbacks of this work are that analyses are performed on the client

using not on the server. Hence, when the analyzed 3D geospatial data exceeds the memory

of the browser, the application does not work. Application is highly dependent on the size

of the input data. Another limitation is that, in 3D intersection analysis, the application

cannot calculate intersection points for partially intersected objects. As can be seen from the

images of the results, partially intersected buildings are considered to be completely inside

the intersected object, in that case the sphere. In their work Auer and Zipf (2018) developed

a 3D WebGIS application that performs 3D line of sight analysis on the browser. The

limitation is that analysis performed on the client as in Chaturvedi, hence application is

highly dependent on the size of the input data.

80

3.3. Methodology

3.3.1. Storage of the 3D Geospatial Data

File systems offer rapid access to data which is helpful for fast reading and extracting

of the necessary information from data when it is compared to databases. On the other hand,

storing data in databases is a more convenient way for analysis and query operations. A

hybrid solution which benefits from both approaches is adopted in this thesis and in the

developed framework. After the tiling 3D geospatial dataset 3D tileset is stored directly in

the file system on the server with a metadata file (tileset.json) referencing file locations. Such

an approach which was used and described in the previous chapter is beneficial for

visualizing purposes. For analysis and query operations 3D tileset is stored in a database.

In relational databases, data is stored in the tables according to a schema. Mostly to

avoid data redundancy, different classes of the data model are stored in different tables in

the database. To query a feature, multiple numbers of tables join together. Join operations

are the main bottleneck of the relational databases. Update operations require updating many

records in many tables.

Unlike relational databases, in NoSQL databases, data is not stored in rigid table

structures. Data may be stored in columns, as key-value pairs, in graphs or in documents

according to the type of the NoSQL database. The data to be stored in the database may have

very different shapes and sizes and designing the schema in advance may be a real pain. In

NoSQL databases, it is possible to store polymorphic data in a single document. Hence this

schema-less approach gives developers greater flexibility while developing applications.

In this thesis open-source mongoDB which is a document-based NoSQL database is

used. A flat schema has been designed to store hierarchical tiles in the database. Our

application database consists of two collections. One collection is for the tile contents and

scene graph data and the other collection stores non-spatial attributes of the features of the

tiles.

To store a tree-like hierarchical data structure in mongoDB in our case 3D tiles, one

way is organizing documents by storing references to "child" nodes in "parent" nodes. There

are four more different ways to store hierarchical data in mongoDB which can be found in

the URL-23. Since each operation in our API starts with traversing the 3D Tileset from top

to down and finding relevant nodes, tiles are stored within a single collection as each tile is

81

a single document in this collection with references to child tiles. 3D tiles are stored in the

“tiles” collection (Figure 50) and feature attributes are stored in the “attributes” collection

(Figure 51).

Figure 50. An example of a single document in the “tiles” collection.

“tile_id” is the id of the tile and “child_id” is the “tile_id” of the child tile. “bbox” is

the coordinate array of the bounding volume of the tile in the order of Xmin, Xmax, Ymin,

Ymax, Zmin, Zmax. “positions” are the array of vertex coordinate triplets in the local

coordinate system. “indices” are the triangle surfaces those values refers to vertices in the

positions array. “normals” are the vertex normals and “batch_id” values are the ids for each

feature in the tile. “BATCH_LENGHT” is the individual feature number in the tile and

“RTC_CENTER” values are the coordinates of the center of the tile in the ECEF coordinate

system. Note that some values are truncated to adjust the size of the figure.

82

 Figure 51. An example of two documents in the “attributes”
collection

In the “attributes” collection, “tile_id” is the id of the tile which can be used to make

queries faster while querying features of a specific tile. “batch_id” is the id of the feature in

the tile and “property” is an object that can have any number of non-spatial attributes. In our

example features have two attributes: “building_height” and “number_of_storeys”.

3.3.2. The 3D Intersection Algorithm

3.3.2.1. Detection of the Collison

The 3D intersection algorithm consists of two parts. First part is to detect whether there

is an intersection between two 3D objects and the second part is to construct the intersected

section as a 3D polygonal mesh.

The algorithm starts with figuring out whether two input 3D polygonal mesh models

intersect or not and return a boolean value as a result. To determine the collision between

objects a plane is swept through objects. Vertices of the objects are stored in an array and as

they intersect the surface while the plane is being swept, they are removed from the array. If

the surface intersects with the vertices of the second object before vertices of the first object

completely removed, there is an intersection, and this part of the algorithm returns “true”

Boolean value. Otherwise, objects do not intersect with each other.

83

 Figure 52. Sweep Plane and collision detection

3.3.2.2. Construction of the Intersected 3D Polygonal Mesh Model

To construct the intersected 3D mesh properly, additional topological information such

as adjacency of the vertices and adjacency of the surfaces is needed. For this purpose, a

topological polygonal mesh data structure called “Half-Edge” data structure is implemented.

Half-Edge (HE) is a combinatorial data structure, and it suits well for our intersection

algorithm as long as the 3D data is manifold which means each edge is incident to at most

two faces. In HE, edges vertically divided to two directed half edges (Figure 43). A simpler

data structure for storing 3D data which traversing is faster than HE such as Circular Doubly

Linked List (CDLL) is not suited well. The problem is that a vertex may have more than two

adjacency vertices but CDLL points to only one next and one previous element. A data

structure that points to more than one element is needed and this is where HE comes to usage.

In HE;

• Each vertex has a reference to its half edge where the half edge starts at this

vertex.

• Each face has a reference to one of the half edges that bounds it.

• Each half edge has a reference to its start vertex, to a face that it belongs to, to

its twin half edge and its previous and next half edges.

84

Using this information, a face can be traversed with its vertices, half edges, and

adjacent faces. An example of a HE records given in Table 6.

 Figure 53. Half-Edge data structure

Table 6. Example of Half-Edge Data Structure

Edge Start Opposite Face Next Edge Prev. Edge

e1,2 V1 e2,1 f1 e1,4 e3,1

e3,1 V3 e1,3 f1 e1,2 e4,3

Figure 54 Shows two objects to calculate intersection between them. Please note that

objects do not intersect each other yet. To calculate intersection, first, Object B was

translated, and intersection occurred in Figure 55.

85

Figure 54. Two objects are about to intersect.

Figure 55. Intersection is calculated and rendered as a red polygonal mesh.

86

To calculate intersection, first, the one of the original vertices of Object A which is

completely inside Object B is found. In the example in Figure 45, it is V1. Then the algorithm

finds neighbor vertices from HE data structure. Using V1 and its neighbors V2 and V3, the

algorithm sends rays along the directions of V1-V2 and V1-V3. Then using ray-surface

intersection tests, the points where the rays intersect with the surfaces of the Object B is

calculated. Using HE structure, new points which occur as a result of intersection are indexed

in the right order and stored as a new HE structure.

Using the 3D intersection algorithm many types of 3D overlay analyze also referred

to as Boolean operations in Computer Graphics and Computational Geometry can be

calculated. Implemented types are 3D intersect, 3D difference, and 3D clip. In 3D Clip,

outside of the intersected part of the first input with the second input extracted from the first

input, only the intersected part remains in the first input. In 3D Difference, the intersected

part is extracted from the first input.

To test our 3D intersection algorithm with real world datasets, by utilizing 3D

Difference, LOD1 block models of Kaşüstü dataset and Trabzon datasets used in Chapter 2,

extracted from LOD2 models of the same datasets and thus, roof geometries are derived for

Kaşüstü and for Trabzon.

3.3.3. Integration of the 3D Intersection Algorithm with Tiling and 3D Tiles

In the previous topic, the 3D intersection algorithm is explained using two 3D objects.

However, it is designed to calculate intersection between two different 3D tileset which

consists of many 3D objects. Note that, in the previous section 3D objects have been

tessellated to many small triangles to represent data density of a 3DCM on a single object

which is easier to debug degeneres caused by the algorithm.

Having to work via mıltiple data chunks in web environments is used to our advantage

in order to accelerate the 3D intersection algorithm and integrate it with tiling structure. To

integrate the 3D intersection algorithm with the tiling structure, first input 3D geospatial data

is tiled and the tileset stored in mongoDB. Then, the second 3D geospatial dataset is tiled

and stored in mongoDB. Then, tiling structure is used as an index structure for the 3D

intersection algorithm. Thus, for each tile in the first 3D tileset, by using bounding boxes of

the tiles, only relevant features derived from the second 3D tileset and intersection

calculations are made tile by tile. The result is a different 3D tileset as long as the tile size

87

threshold is exceeded. As the intersections are calculated, a new tileset is constructed by

importing intersected objects to a null R-Tree or Adaptive QuadTree structure. If the density

of the results do not exceed the tile size threshold, the result is constructed as a single tile

not a tileset.

3.3.4. Other Types of 3D Analyses Implemented in the Framework

Additionally, to 3D Clip, 3D Intersection and 3D Difference, 3D Buffer is also

implemented. As a result of the 3D Buffer analysis, a point is converted to a 3D sphere and

a polyline is converted to a cylindrical polygonal mesh (Figure 56). Buffer distance can be

given by the user in meters. Another important parameter is “quad_segs” which is the

number of the segments used to approximate a quarter circle. The default quad_segs value

is 8. The lower values can be used to create more simplified versions of the spheres and

cylinders which makes calculation faster or higher values can be used to construct more

precise 3D shapes.

 Figure 56. A sphere and a cylinder constructed as a result of 3D Buffer analysis

88

3.4. Findings and Discussion

3.4.1. Performance of the 3D Intersection Algorithm

3D Difference analysis is used to test the 3D intersection algorithm using both Kaşüstü

dataset and Trabzon dataset. In the test for both datasets, LOD1 models are extracted from

LOD2 models and thus, 3D models of the roofs are derived. The results of the performance

tests can be found in Table 7.

Table 7. Performance of the 3D Difference Based on 3D Intersection Algorithm.

Dataset Number of the Vertices Execution Time (ms)

Kaşüstü 303275 16.78

Trabzon 1334020 29.63

Note that execution time for construction of the tilesets for input datasets is excluded.

Also, rendering time of the result tileset is excluded. Only calculation of the intersections

and construction of the 3D polygonal meshes are considered. Without the use of the

hierarchical data structures, calculation of intersection is an O (n2) process and n is the

number of the vertices. But using the hierarchical data structures as an indexing structure,

although the number of the vertices increased approximately 5 times in the Trabzon dataset,

execution time is only approximately 2 times slower and shows the scalability of the 3D

intersection calculation with hierarchical data structures.

3.4.2. Limitations

One of the limitations of the algorithm is that it cannot handle non manifold 3D shapes.

Because in the HE data structure only left and right faces of an edge can be represented but

in non-manifold shapes an edge is incident to more than two faces (Figure 57). Hence the

proposed algorithm cannot calculate 3D touches.

89

Figure 57. Non manifold shape. Red edge is incident to four faces

Another limitation is a special case that is encountered during testing and debugging

the algorithm. If one of the vertices of an object is not completely inside the other object

(Figure 58) the proposed algorithm cannot construct the intersection as a 3D polygonal mesh.

Because the construction process begins with one of the vertices of an object that is

completely inside the other object. Of course, this can be handled by increasing the ray-

surface intersections, but this occurs very rarely in real world data and increasing the number

of the ray-surface intersection tests decrease the performance of the algorithm hence not

implemented.

Figure 58. A special case none of the vertices of the objects are
inside the other object

90

Calculation of the points where ray intersects with the surface requires high coordinate

precision, hence, in a floating-point environment this situation has caused some

degenerations that the 3D intersection algorithm must handle. While calculating

intersections between rays and planes and determining new positions of vertices, a tolerance

value must be predefined and vertices with small distances than this value to the plane must

be accepted as intersected. In our implementation this tolerance value is 0.05 in meters.

91

3.5. Conclusion

In this chapter, 3D analyses, and query components of the framework have been

designed and developed. To query and analyze the 3D geospatial data, data is stored in a

NoSQL database called mongoDB. A new 3D intersection algorithm has been developed for

3D polygonal meshes. Using the 3D intersection algorithm under the hood, 3D Clip and 3D

Difference analyzes also implemented. In addition to 3D intersection, 3D Buffer analysis

has been implemented. The proposed algorithm tested with both synthetic and real-world

data. Synthetic data is used for detecting special cases and degeneres, while real world data

is used to test real world scenarios. Some limitations have been determined and reasons for

them are explained. For the first time with the developed components, many decision making

processes can be analyzed in 3D in a web environment using only a browser without any

software installation.

One of the future works is to support more 3D analysis capabilities and also support

more 3D representations such as Voxels. Also, to overcome limitations of the algorithm, a

more complex data structure than HE will be implemented.

Additionally, many real-world scenarios will be analyzed using the developed

framework such as detecting buildings outside the zonal plan in 3D.

4. CHAPTER 4 WEB-BASED PROCEDURAL MODELLING OF 3D

MODELS

4.1. Introduction

With the rapid development in data acquisition methods and computer graphics, 3D

City Models (3DCM) are widely used, mostly in the city planning industry. A literature

review about 3DCMs and their applications can be found at (Biljecki et al., 2015). With the

spread of open data policies, which is based on institutions to make their data publicly

available (Donker and Leonen 2016), many institutions in Europe and the United States

share 3DCMs as open data via web using web technologies HTML5 and WebGL.

Rotterdam, Amsterdam, Delft, Berlin and New York are notable ones.

Most of the 3DCMs are found as LoD1 block models in practice, since LoD2 models

are much more difficult to obtain because of the need for time consuming process and

expensive data acquisition techniques (Biljecki and Dehbi, 2019). The minimum required

level of detail in 3DCMs varies according to use cases (Biljecki et al, 2018). While LoD1

models are sufficient for some use cases such as shadow analysis, some use cases require

general roof geometries such as solar analysis (Biljecki et al 2019 and Weiler et al 2019).

In this work, the possibility of constructing 3D models using 2D data such as building

footprints and an aerial image has been investigated. It is very difficult to model building

roofs from 2D building footprints without roof type information. To overcome this issue,

deep learning techniques (DL) have been used to derive roof types from aerial imagery.

There are four contributions in this work. First, a methodology to obtain roof type

automatically from aerial images without any user input has been developed. Then roof

geometries have been constructed using procedural modelling and only 2D data. The Straight

Skeleton algorithm has been extended to be able to model roof surfaces. And finally the

proposed methodology has been implemented as a web-based solution using web services.

DL, is a machine learning technique that a computer model learns to perform

classification tasks directly from images, text, or sound. DL models can achieve state-of-the-

art accuracy, sometimes exceeding human-level performance. Models are trained by using a

large set of labelled data and neural network architectures that contain many layers (URL-

93

23). Thus, a DL model called CNN has been used to classify 3 main roof types with an aerial

image in this work. After the classification, extracted roof type information has been used to

construct roof geometries. The 3 main roof types are Hipped, Gable and Flat.

Procedural modelling (PM) can be used to generate 3DCMs as LoD2 (Tsiliakou et al.,

2014; Martinovic, 2015). PM is an umbrella term which includes many modelling techniques

such as L-Systems, fractals and shape grammars. All of these techniques aim to create

multiple instance models via utilizing a set of predefined rules and algorithms. Batch

modelling approach of PM minimizes user interaction and labour. To be able to construct

roof geometries, PM technique has been used with roof type information that is derived via

DL.

LoD1 block models have been generated via extrusion (Ledoux, H. and Meijers, M.,

2011; Ohori, K., A., et al., 2015). Roof geometries have been constructed using Straight

Skeleton Algorithm (Aichholzer et al., 1995) and Sweep Line Algorithm (Souvaine., 2005).

Then roof geometries added to the top of block models. To be able to implement proposed

methodology as a web-based solution, RESTful web services have been developed with web

technologies and finally, constructed roof geometries and generated 3DCM have been

visualized in browser via HTML5 and WebGL.

4.2. Background and Related Work

One of the widely used methods to generate 3DCM is extrusion from 2D footprints

(Ledoux, H. and Meijers, M. 2011), (Arroyo, O., K. et al 2015). But 3DCMs generated by

this method lack roof geometries. The lack of roof geometries hinders the widespread use of

3DCMs. While some 3D spatial analysis can be performed using LoD1 data such as shadow

analysis, some analysis such as solar potential requires minimum LoD2 data (Biljecki et al

2019 and Weiler et al 2019).

Another popular method to generate 3DCM as LoD2 is using LIDAR point cloud data

(Tomljenovic, I. et al 2015), (Bauchert J., P. and Lafarge F., 2019). Roof shape and building

shell is the most valuable geometric information that can be extracted from point cloud data.

However, this process requires additional data such as 2D building footprints and

computationally intensive data process workflows to be able to classify and construct city

objects.

94

Procedural modelling (PM) can be used to generate 3DCMs as LoD2 (Tsiliakou, E. et

al 2014), (Martinovic, A., 2015). PM is an umbrella term which includes many modelling

techniques such as L-Systems, fractals and shape grammars. All of these techniques aim to

create multiple instance models via utilizing a set of predefined rules and algorithms. Batch

modelling approach of PM which minimizes user interaction and labour, fits very well into

GIS applications which deal with management of big data. To be able to generate 3DCMs

as LoD2, PM technique requires roof type information.

To obtain roof type information some respectively new studies have been done based

on Deep Learning. In practical terms, deep learning is a subfield of machine learning and

functions in the same way but it has different capabilities. Unlike other machine learning

(ML) techniques, deep learning models can learn the discrimination between classes in given

dataset without feature extraction. But while doing this, deep learning techniques need more

amounts of training data than ML techniques such as Support Vector Machine (SVM),

Decision Trees, PCA. Deep learning techniques or more specifically CNNs are widely used

for visual cognitive tasks as classification to derive discriminant functions between classes

from images. Castagno and Atkins (2018) use CNNs to classify roof types for multicopter

emergency landing site selection. First, they use polygon of building roof outline for

cropping data from a LIDAR based DSM image. Then they use the polygon for cropping

from the RGB image in the same way. After the preparation of data, they fuse RGB and

LIDAR images as input to CNN. Patrovi et al. (2019) choose a deep learning based

approach. They use LIDAR based DSM and pansharpened VHR (Very High Resolution)

satellite images but their approach has drawbacks with non-rectilinear roof shapes. Axelson

et al. (2018) uses CNNs with photogrammetric point clouds obtained from aerial images for

classifying roof types. But they consider the roofs as only two classes: ridge and flat roofs.

Biljecki and Dehbi (2019) has obtained roof types from LoD1 models with machine learning

without using point clouds but they have not yet constructed roof geometries using this

information. Also, they used the LoD1 city model, not 2D building footprints.

95

4.3. Methodology

4.3.1. Obtaining Roof Type Information

A Python script has been written to generate train images from aerial images. These

images are served as open data and can be found on (Bradbury et al 2016). Geopandas library

has been used to extract geometry and attributes from 2D footprints. With this script,

multiple buildings have been cropped from an aerial image and saved as separate image files

using building envelopes that are extracted from 2D building footprints. Using Microsoft

Custom Vision Service (URL-24) that eases training process, train images are labeled as

“Hipped”, “Gable”, “Flat” and “Negative” to train data. The “Negative” label is used when

the image cannot be identified as hipped, gable or flat. A general workflow for the training

process is shown in Figure 59.

96

 Figure 59. Training and Prediction Processes.

After the training process, the model has reached %89,9 accuracy for predicting roof

type. The trained model exported from Custom Vision as a TensorFlow graph file to be used

in a prediction process. A trained model can be saved as a model file and can be used in a

different environment or application for prediction process. This is often called “transfer of

learning” in literature. To be able to predict roof types a Python script has been coded. The

model file has been parsed using TensorFlow (URL-25) and roof types have been predicted

via this script automatically. A shapefile which consists of 2D building footprints has been

enriched with roof types as an attribute. All the workflow for prediction of roof type can be

found on a publicly available Github repository (URL-26) that includes train data, test data

and scripts.

97

4.3.2. Extrusion and Block Model Generation

A 3D model of the city can be obtained via extrusion of the building footprints. For

this purpose, normal vectors of the building footprints are calculated. Normal vector is a unit

vector perpendicular to the surface (Figure 50). Extracting P1 from P2 and P2 from P3

vectors V1 and V2 are obtained. Using the cross product of these vectors, surface normal is

calculated.

 Figure 60. Calculation of the surface normal

After the calculation of surface normals, using the “height” attribute of the building

footprints, building footprints are translated along surface normals and top surfaces are

constructed. By indexing the top and footprint points, vertical surfaces are constructed and

LOD1 block model is derived. (Figure 61).

Figure 61. 2D building footprints (left) 3D block model (right).

98

There are condominium unit plans (CUP) drawn by geomatic engineers that have

boundaries of condominiums as 2D (Figure 62).

 Figure 62. Condominium unit plan (Çağdaş, 2012).

If CUPs are provided, our modeler can model condominium units as well at city scale.

For this purpose each condominium is translated along the surface normal according to the

height of the condominium in CUP. Then translated polygons are extruded and

condominiums are modelled procedurally (Figure 63).

99

Figure 63. Polygons (left) multiplied and translated (middle) condominium unit in 3D.

Geometries of the condominium units are stored as CityJSON. Since condominium

units are not defined in the CityGML data model, an ADE is developed for storing

condominium units Figure 64.

100

Figure 64. 3D condominiums stored in the CityJSON file.

4.3.3. Construction of the Roof Geometries

In order to model roof geometries, a straight skeleton algorithm has been used. The

definition of straight skeleton (SS) is also its construction. SS is a geometric construct that

consists of only straight edges, as a result of the shrinking process of a polygon (Figure 65).

101

Figure 65. Input polygon (green), wave fronts (purple lines) and SS (red lines).

In this shrinking process, each edge of the polygon moves inwards of the polygon in a

self-parallel manner. Two events change the topology of the input polygon. Edge Event

occurs when an edge shrinks to zero and creates a node in skeleton Figure 66 and Split Event

occurs when a reflex vertex touches to a non-consecutive edge and creates a node in skeleton

Figure 67.

102

Figure 66. Edge Event (Yellow edge shrinks to zero at the orange point)

Figure 67. Split Event (yellow edge meets red reflex vertex and this creates blue polygon).

103

To stimulate this shrinking process, there are two approaches. The 2D construction

method is based on angular bisectors (Felkel and Obdrzalek, 1998) and the 3D construction

method is based on sweep planes firstly introduced by (Eppstein and Erickson 1999) and

used by (Kelly 2015).

In the bisector-based approach, in order to create roof geometries in 3D, the skeleton

must be traversed and Z values of nodes that are created by the skeleton must be manipulated

according to proper roof height. Since sweep plane approach does not require this additional

step, sweep plane approach has been used in this work.

In sweep plane approach, all nodes of the skeleton are detected by intersection of

planes. Edge events have been detected by collision of three consecutive direction planes

with sweep plane and split events have been detected by collision of two consecutive and

one non-consecutive direction planes with sweep plane.

In the proposed algorithm which takes polygons as input, vertices of polygons stored

in circular doubly linked list, every vertice therefore, has pointers to next and previous

vertices and also next and previous direction planes. Sweep plane, which is a plane parallel

to the input polygon, moves in the direction of the Z axis and the polygon shrinks. Edge

events and split events are stored in a priority queue according to the height of sweep plane

which gives the order of nodes in SS. When every edge of the input polygon shrinks to zero

algorithm finishes and SS completed.

The result of SS is a directed graph. In order to generate roofs, roof surfaces must be

generated from this graph. To accomplish this, a 3D sweep line algorithm has been

implemented. In this algorithm, first, nodes of SS is grouped according to original edges of

input polygon (Orange points in Figure 5 for green edge). Observe that, a node is can be

related more than one group. For instance in Figure. 5, node 2 in both in the group of edges

E1 and E2. Then, for every group, a sweep line that is perpendicular to the related edge,

moves from start to the end of the edge. Intersection order of nodes with this sweep line,

determines the order of the points for the roof polygon (Figure 68).

104

Figure 68. Sweep Line Process.

SS and sweep line have been implemented via web services as a web-based solution

using RESTful architecture. For each roof type there are two web services. One service is

for convex polygons and the other is for non-convex polygons. Web application consists of

3 sub modules: storage module, process module and web server module. General system

architecture has been given below (Figure 69). Application has been deployed on an Amazon

S3 Bucket cloud storage environment. 2D building footprints can be upload to a MongoDB

instance on the bucket via a rest service that has been developed using Java Jersey web

framework.

105

Figure 69. General System Architecture.

4.3.4. Visualization of the 3DCM via Browser

3DCMs are huge in size, to be able to visualize them via browsers, tiling approaches

has been used with web technologies such as HTML5 and WebGL. 3D roof geometries are

added to 3D models of the tiles thus, generated roofs are integrated to the tiling system that

was described in Chapter 2. Thus, only needed tiles based on user’s current view in the scene

are fetched from server.

106

Since WebGL supports only triangles as primitives for representation of surfaces, 3D

polygons must be triangulated. An “Ear Clipping” algorithm has been used for this purpose

and 3D polygon surfaces that belongs to roof geometries have been triangulated.

After generation of tileset, in order to visualize tileset in browser open source

javascript library Cesium.js has been used in this study. Since Cesium.js is built on WebGL,

3DCM has been rendered using client’s GPU and without any additional plug-in (Figure 70).

 Figure 70. Red roofs: Flats, Green roofs: Hippeds, Purple roofs:
Gables.

4.4. Findings and Discussion

4.4.1. Performance Metrics of the Roof Type Prediction

3423 roof type images that belong to hip, gable and flat roofs have been used as

training data. Flat 751, gable 1762, hip 835 The accuracy for predicting roof types is 0.89,9.

Performance metrics are represented as AP, Recall and Precision (Figure 71). The overall

average precision (AP) value as 0.89 is highly acceptable and proves the training is enough

for prediction.

 Figure 71. Performance metrics of training process.

107

The accuracy is higher than (Biljecki and Dehbi 2019). The main reason for this result

is that in this work only 3 roof types has been classified. In (Biljecki and Dehbi 2019) 6

different roof types has been classified. Also, to obtain roof types, aerial image has been

used in this work but LoD1 3DCM in theirs. The lack of aerial imagery reduces the overall

performance especially between similar types such as hipped and gable.The accuracy of

predicting for individual roof types has been given as confusion matrix (Table 8).

 Table 8. Confusion matrix of prediction process

 Flat Gable Hipped Negative

Flat 53 5 4 0

Gable 8 96 10 0

Hipped 1 14 143 0

Negat. 1 10 2 14

Total 63 125 159 14

And comparison of predicted results with ground truth values (Table 9). Precisions of

classes are not directly proportional with counts of images that used to train the model.

Because, quality of the images also effects the results, not only count of the images.

108

Table 9. Performance metrics of prediction process

Class Ground Truth Prediction Accuracy Precision Recall

Flat 63 62 94,74% 0,85 0,84

Gable 125 114 86,98% 0,84 0,77

Hipped 159 158 91,41% 0,91 0,9

Negativ. 14 27 96,40% 0,52 1

4.4.2. Special Cases and Floating-Point Issues

Implementing SS which requires high coordinate precision in a floating point

environment has been caused some degenerations that construction algorithm must be

handle. While calculating intersections between planes and determining new positions of

vertices, some vertices that must have exact same coordinates can have different coordinates

with minimal difference due to the floating point arithmetic. To be able to handle this

situation, a tolerance value must be predefined and vertices with small coordinate differences

with this value must be union into one vertex. If these situations are not handled, these small

differences can lead to big changes in roof geometries (Figure 72).

109

Figure 72. Degeneration. Two Edge Events must meet on the same point (left) but not

properly they do not meet (right).

4.5. Conclusion

In this work, roof type information has been obtained from aerial image with deep

learning and using this information, roof geometries have been constructed procedurally

without any human intervention. A general workflow has been proposed to generate LOD2

3D models from 2D datasets.

This work indicates that web-based generation of useful 3D models as LOD2 from 2D

datasets which are already derived by local governments can be a beneficial solution. All

pipeline and process can be done using only web-based technologies, open-source software

components.

In this proposed pipeline for automatic modelling of roof geometries, in the time of

writing paper, limited to 3 class as hip, gable and flat. Hence, there is an on-going work on

this topic and this work will be extended to include modeling other roof types as well such

as pyramid, shed etc. Also, it is aimed to detect and model chimneys on the roofs as well.

5. REFERENCES

Achere, S., Glas, H., Beullens, J, Druyter, G., Wulf, A., and Maeyer, P. 2016. Development

of A 3D Dynamic Flood Web GIS Visualization Tool. International Journal of Safety
and Security Engineering, 6, 3, 560-569.

Anvandning, O., 2010. On the Use Of OpenGL ES 2.0 Shaders for Mobile Phones Using

Cross Platform Middle-Ware., Semantic Scholar, 2010.

Axelsson, M., Soderman, U., Berg, A., and Lithen, T., 2018. Roof Type Classification Using

Deep Convolutional Neural Networks on Low Resolution Photogrammetric Point
Clouds From Aerial Imagery. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1293-1297.

Biljecki, F., Ledoux, H. and Stoter, J., 2017. Generating 3D City Models without Elevation

Data, Computers, Environment, and Urban Systems, 64, 1-18.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A., 2015. Applications of 3D

City Models: State of Art Review ISPRS International Journal of Geo-Information,
4, 2842-2889.

Bishop, C. M., 2006. Pattern recognition and machine learning. springer.

Bradbury, K., Brigman, B., Collins, L., Johnson, T., Lin, S. and Newell, R. 2016. Atlanta,

Georgia - Aerial imagery object identification dataset for building and road detection
and building height estimation. Figshare. Collection.

Castagno, J., and Atkins, E. M. Automatic classification of roof shapes for multicopter

emergency landing site selection, Aviation Technology, Integration, and Operations
Conference, June 2018, Atlanta, Proceedings, 3977.

Chaturvedi, K., Willenborg, B., Sindram, M., and Kolbe TH., 2017. Solar Potential analysis

and Integration of Time-Dependent Simulation Results for Semantic 3D City Models
Using Dynamizers. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, IV-4/W5, 25-32

Chaturvedi, K., and Kolbe TH., 2017. Future City Pilot 1 Engineering Report. Lehrstuhl für

Geoinformatik.

Chaturvedi, K., Yao, Z., and Kolbe TH., 2015. Web-based Exploration of and Interaction

with Large and Deeply Structured Semantic 3D City Models using HTML5 and
WebGL. Bridging Scales, March 2015, Köln, Conference Paper in Proceedings 296-
306.

Chen, W., HE, B., Zhang, L., and Nver D. 2016. Developing An Integrated 2D and 3D

WebGIS-Based Platform for Effective Landslide Hazard Management. International
Journal of Disaster Risk Reduction 20, 26-38.

111

Doyle, A. and Cuthbert, A., 1998. OpenGIS Project Document 98-061: Essential Model of

Interactive Portrayal, 1998.

Evans, A., Romeo, M., Bahrehmand, A., Agenjo, J., and Blat, J., 2014. 3D Graphics On the

Web: A Suervey, Computers and Graphics. 41. 43-61.

Gaillard, J, Peytavie, A., and Gesguiere G., 2020. Visualization and Perdonalization of

Multi-Representations City Models. International Journal of Digital Earth. Vol 13.
No.5. P.627-644. 2020.

Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., and Peytavie, A. 2015. Urban data

visualisation in a web browser. Web3D 2015, Jun 2015, Heraklion, Greece.
pp.81-88, Proceedings of the 20th International Conference on 3D Web
Technology.

Gesquiere, G., and Manin, A. 2012. 3D Visualization of Urban Data Based on CityGML

with WebGL. International Journal of 3-D Information Modeling (IJ3DIM), 1(3), pp.
1-15.

Gutbell, R., Pandikow, L., Coors, V., and Kammeyer, Y., 2016. A Fraemwork for Server

Side Rendering Using OGC’s 3D Portrayal Service. Web3D 2016. July 2016.
California.

Guttman, A., 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.

SIGMOD’84. Boston.

Hagedorn, B., 2010. Web View Service Discussion Paper, Version 0.3.0. 2010.

Hildebrandt, D., 2014. A Software Reference Architecture for Service-Oriented 3D

Geovisualization Systems. ISPRS International Journal of Geo-Information 3 4, pp
1445-1490. 2014.

Jaillot, V., 2020. 3D, Temporal and Documented Cities: Formalization, Visualization and

Navigation. PhD Thesis. University of Lyon. 2020.

Jankowski, J., Rssler, S., Jung, Y., Behr, J., and Slusallek, P. Declarative Integration of 3D

Graphics into the World Wide Web: Principles, Current Approaches, and Research
Agenda. Proceedings of the 18th International conference on 3D Web Technology
(Web3D’13), 2013. P. 39-45.

Kilsedar, CE., Fissore, F., Pirotti, F., and Brovelli, MA., 2019. Extraction and Cisualization

of 3D Building Models in Urban Areas for Flood Simulation. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XLII-2/W11, 2019.

Klimke, J., 2019. Web-Based Provisioning and Application of Large-Scale Virtual 3D City

Models. PhD Thesis. Hasso Plattner institute, Postdam University, 2019.

112

Koukofikis, A., Coors, V. and Gutbell, R., 2018. Interoperable Visualization of 3D City

Models Using OGC’s Standard 3D Portrayal Service. ISPRS Annals of the
Photogrametry, Resomte Sensing and Spatial Information Sciences, Volume IV-4

Kramer, M, and Gutbell R., 2015. A case study on 3D geospatial applications in the Web

using state-of-the-art WebGL frameworks. Web3D 2015, Jun 2015, Heraklion.
Greece.

Kutzner, T., and Kolbe, TH., 2018. CityGML 3.0: Sneak Preview. PFGK18-

Photogrammetrie-Fenerkundung-Geoinformatik-Kartographie, 37. Jahrestagung in
München 2018, 835-839.

Kutner, T., Chaturvedi, K., and Kolbe, TH., 2020. CityGMl 3.0: New Functions Open Up

New Applications. Journal of Photogrammetry, Remote Sensing and Geoinformation
Science. 88. P 43-61. 2020.

Ledoux, H. and Meijers, M., 2011. Topologically Consistent 3D City Models Obtained By

Extrusion. International Journal of Geographical Information Science. 25, 4, 557-
574.

Ledoux, H., Ohori KA., Kumar, K., Dukai, B., Labetski, A., and Vitalis S., 2019. CityJSON:

A Compact and Easy to Use Encoding of the CityGML Data Model. Open Geospatial
Data, Software and Standards. 2019.

Li, B., Wu, J., Pan, M., and Huang, J. 2015 Application of 3D WebGIS and Real-Time

Technique in Earthquake Information Publishing and Visualization. Earthquake
Science, 28, 223-231.

Lu, M., Wang, X., Liu, X., Chen, M., Bi, S., Zhang, Y., and Lao, T., 2020. Web-Based Real-

Time Visualization of Large-Scale Weather Radar Data Using 3D Tiles. Transactions
ın GIS.

Martinovic, A. Inverse Procedural Modeling of Buildings. Ph.D. Thesis, KU Leuven,

Leuven, ´ Belgium, 2015.

OGC, CityGML 2.0. OGC CityGML Encoding Standard. 12-019.

Ohori, K., A., Ledoux, H. and Stoter, J., 2015. A Dimension Independent Extrusion

Algorithm Using Generalised Maps. International Journal of Geographic Information
Science. 29, 7, 1166-1186.

Parisi, T., 2014. Programming 3D Applications with HTML% and WebGL: 3D Animation

and Visualization for Web Pages 1st Edition O’Reilly, United States of America, 574
p.

Partovi, T., Fraundorfer, F., Bahmanyar, R., Huang, H., & Reinartz, P., 2019. Automatic 3-

D Building Model Reconstruction from Very High Resolution Stereo Satellite
Imagery. Remote Sensing, 11(14), 1660.

113

Pispidikis, I and Dimopoulou, E. 2016. Development of a 3D WebGIS System for Retrieving

and Visualizing CityGML Data Based on their Geometric and Semantic
Characteristics by Using Free and Open Source Technology. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-
2/W1, 2016, pp.47-53

Schilling, A., and Kolbe TH., 2010. Draft for OpenGIS Web 3D Service Implementation

Standard Version 0.4.0. 2010.

Shverin, J, Rissetto, H., Remondio, F., Agugario, G., and Girardi, G. 2013. The

MayaArch3D Project: A 3D WebGIS for Analyzing Ancient Architecture and
Landscapes. Literary and Linguistic Computing. 28, 736-753.

Taraldsvik, M., 2011. Exploring the Future: is HTML5 the solution for GIS Applications on

the World Wide Web?. Technical Report, NTNU 2011.

TMS, 2010. Tile Map Service Implementation Standard, 2010.

Tomljenovic, I.; Höfle, B.; Tiede, D.; Blaschke, T. 2015. Building extraction from airborne

laser scanning data: An analysis of the state of the art. Remote Sensing., 7, 3826–
38620

Tsiliakou, E.; Labropoulos, T., Dimopoulou, E. Procedural modeling in 3D GIS

environment. International. Journal of 3-D Information Modelling. 2014, 3, 17–34.

Xiaoqing, Z., Jixin L., and Yonghua, X., 2010. Architecture and Application of 3D WebGIS

based on Skyline and ArcGIS. 2nd International Conference on Computer
Engineering and Technology. 2010

URL-1, https://tr.wikipedia.org/wiki/HTML5. Accessed on 15 May 2021.

URL-2, Cortana 3D. http://www.cortona3d.com/de/cortona3dviewer. Acccessed on 19

May 2021.

URL-3, FreeWRL. http://freewrl.sourceforge.net/. Accessed on 19 May 2021.

URL-4, XNavigator. http://xnavigator.sourceforge.net/doku.php. Acvessed on 20 May

2021.

URL-5, Nasa World Wind. https://worldwind.arc.nasa.gov/. Acccessed on 20 May 2021.

URL-6, Google Earth. https://www.google.com/intl/de/earth/desktop/. Accessed on 20 May

2021.

URL-7, GeoPortail. https://www.geoportail.gouv.fr/. Accessed on 21 May 2021.

114

URL-8, 3D Macau. http://www.3dmacau.com/. Accessed on 21 May 2021.

URL-9, Open3DGIS. www.open3dgis.org. Accessed on 21 May 2021.

URL-10, Vulkan. https://www.khronos.org/vulkan/. Accessed on 23 May 2021.

URL-11, DirectX12. https://tr.wikipedia.org/wiki/DirectX. Accessed on 23 May 2021.

URL-12, Metal. https://en.wikipedia.org/wiki/Metal_(API). Accessed on 23 May 2021.

URL-13, W3C GPU for The Web Community Group. Accessed on 23 May 2021.

URL-14, Web 3D Consortium. https://www.web3d.org/. Accessed on 24 May 2021.

URL-15, Indexed 3D Scene Specification. https://github.com/Esri/i3s-spec. Accessed 04

June 2021.

URL-16, OGC 3D Tiles Standard. https://github.com/CesiumGS/3d-tiles. Accessed on 04
June 2021.

URL-17, obj23dtiles. https://github.com/PrincessGod/objTo3d-tiles. Accessed on 05 June

2021.

URL-18, citygml23dtiles. https://github.com/njam/citygml-to-3dtiles. Accessed on 06 June

2021.

URL-19, 3D Tiles Overview. https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-

overview.pdf. Accessed on 02 March 2020.

URL-20, Quantized Mesh Specification. https://github.com/CesiumGS/quantized-mesh.

Accessed on 06 July 2020.

URL-21, Horizon Culling. https://cesium.com/blog/2013/04/25/horizon-culling/. Accessed

on 06 July 2020.

URL-22, Computing the Horizon Occlusion Point.

https://cesium.com/blog/2013/05/09/computing-the-horizon-occlusion-point/.
Accessed on 06 July 2020.

115

 URL-23, Machive Learning vs Deep Learning,

https://medium.com/@mail2princeyadav/machine-learning-vs-deep-learning-

b5c5a4fc5c. Accessed on 07 July 2021.

URL-24, Microsof Custom Vision, https://www.customvision.ai. Accessed on 07 July 2021.

URL-25, Tensor Flow, https://www.tensorflow.org. Accessed on 08 July 2021.

URL-26, https://github.com/alpertungakin/Roof-Type-Classification. Accessed on 09 July

2021

Weiler, V., Stave, J. and Eicker, U., 2019. Renewable Energy Generation Scenarios Using
3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation
Systems with Case Study Application. Energies 12 (3), pp. 403.

Wendel, J., Murshed, S.M., Sriramulu, A., Nichersu, A., 2016. Development of a Web-

Browser Based Interface for 3D Data—A Case Study of a Plug-in Free Approach for
Visualizing Energy Modelling Results, Progress in Cartography. Springer
International Publishing, Cham, pp. 185–205.

Willenborg, B., 2015. Simulation of explosions in urban space and result analysis based on

CityGML-City Models and a cloud-based 3D-Webclient. Master Thesis. Technical
University Munich Chair of Geoinformatics. 2015.

Xu,P., Chang, X., Ren P., Ling, G., Chen, X., and Hauptmann A., 2020. A Survey of Scene

Graph: Generation and Application. IEEE Transactions on Neural Networks and
Learning Systems.

3DPIE, 2012. OGC 3D Portrayal Interoperabilty Experiment Final Report.

3DPS, 2017. OGC 3D Portrayal Service Document.

CURRICULUM VİTAE

He graduated from Akçaabat Anatolian High School in 2005. He received his B.Sc.

degree from the Department of Geomatic Engineering, Yıldız Technical University in 2010.

He received his M.Sc. degree from the Graduate School of Natural and Applied Sciences in

2014 from Karadeniz Technical University. He has been working as a research assistant at the

same Graduate School since 2012. His main research topics include 3D GIS, 3D Computer

Graphics, 3D Computational Geometry and 3D WebGIS.

	Boş Sayfa
	Başlıksız

	Anabilim dalı: GEOMATICS ENGINEERING DEPARTMENT
	tezin adı: THE DESIGN AND DEVELOPMENT OF A WEB-BASED 3D GEOGRAPHIC INFORMATION MANAGEMENT FRAMEWORK
	Tez Programı: DOCTORATE THESIS
	Yazar Adı: ZİYA USTA
	Savunma Ay, Yıl: NOVEMBER 2021
	anabilm dalı: GEOMATICS DEPARTMENT
	tez adı: THE DESIGN AND DEVELOPMENT OF A WEB-BASED 3D GEOGRAPHIC INFORMATION MANAGEMENT FRAMEWORK
	yazarın adı: Ziya USTA
	unvan program: DOCTOR OF PHILOSOPHY
	gün: 24
	ay: 09
	yıl: 2021
	gün1: 15
	ay1: 11
	yıl1: 2021
	il ve yıl: 2021
	danışman: Prof. Dr. Çetin CÖMERT
	ikinci d:
	nokta:
	ikinci danışman:

